Présentation
EnglishRÉSUMÉ
Depuis leur mise sur le marché en 1991, les accumulateurs lithium-ion ont envahi notre quotidien : ils alimentent en énergie nos smart phones, ordinateurs portables, tablettes, vélos électriques, etc ; tandis que véhicules électriques et hybrides se répandent dans les rues. Comment cette technologie s’est-elle, en quelques années, substituée aux filières établies depuis des décennies? Comment l’industrie asiatique a-t-elle réussi à occuper dans ce domaine une position dominante? Quelles seront les prochaines étapes du développement de ces systèmes de stockage électrique? En replaçant cette problématique dans un contexte historique, cet permet de comprendre l’enchaînement des découvertes et des évolutions dans ce domaine, et apporte un éclairage sur les développements en cours
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Frédéric LE CRAS : Expert senior au CEA – LETI, Grenoble, France
-
Didier BLOCH : Responsable de laboratoire au CEA – LITEN, Grenoble, France
INTRODUCTION
Dans la longue histoire du développement des systèmes de stockage électrochimique de l’énergie (piles, accumulateur), l’avènement des accumulateurs au lithium métal, puis lithium-ion représente un tournant. Cette technologie d’accumulateur utilisant une électrode négative à fort pouvoir réducteur et par voie de conséquence un électrolyte non aqueux permet, une fois associée avec une électrode positive adéquate, de générer une force électromotrice d’environ 4 V. Cette tension élevée est un premier atout pour permettre de stocker une énergie électrique importante rapportée à la masse et au volume de l’accumulateur. L’optimisation du choix des matériaux et les progrès des techniques de fabrication réalisés depuis la mise sur le marché des premiers accumulateurs Li-ion en 1991 permettent d’atteindre aujourd’hui des densités d’énergies voisines de 250 Wh · kg–1 et 600 Wh · L–1. Ces valeurs sont de loin les plus élevées obtenues parmi les systèmes rechargeables fonctionnant à température ambiante.
Les premiers accumulateurs Li-ion ont été conçus et commercialisés initialement par Sony (et Asahi Kasei) pour l’alimentation de caméscopes. Depuis lors, cette technologie a accompagné de manière synergique l’explosion du marché des appareils électroniques portables et a rapidement supplanté dans ces applications la technologie d’accumulateur aqueux la plus avancée, le nickel-hydrure métallique (Ni-MH). Par ailleurs, le rôle clef joué par cette technologie dans la conception et la réalisation des équipements électroniques portables, allié à la position de quasi-monopole prise par l’industrie asiatique sur ces marchés depuis la fin des années 1980, a rapidement conduit à une intégration de la fabrication des accumulateurs Li-ion au sein des firmes concernées. Ce positionnement stratégique explique en grande partie la prééminence actuelle des fabricants d’accumulateurs japonais, coréens, plus récemment chinois sur cette production.
Parallèlement, dans un contexte global imposant la réduction de l’utilisation des énergies fossiles et le recours à des sources d’énergies renouvelables, la question du stockage de l’énergie électrique devient de plus en plus prégnante. Considérés il y a peu comme trop coûteux et insuffisamment sûrs, les accumulateurs Li-ion tirent aujourd’hui bénéfice de la maturité technologique de la filière et pénètrent chaque jour davantage le marché du véhicule électrique et hybride et du stockage stationnaire à grande échelle. Ces nouveaux domaines d’application, impliquant de plus forts volumes de production comparés à celui de l’électronique portable, imposeront sans nul doute de nouveaux développements à la technologie Li-ion, et motivent dès à présent la recherche de systèmes « post Li-ion » encore plus performants.
VERSIONS
- Version courante de déc. 2024 par Frédéric LE CRAS, Didier BLOCH
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Ressources énergétiques et stockage
(191 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. 1970-1991 : boom des systèmes rechargeables
Le regain d’intérêt pour le véhicule électrique après le choc pétrolier de 1973, le développement exponentiel de l’électronique grand public à partir de la fin des années 1970 et le plafonnement des performances des accumulateurs Ni-Cd conduisent à une accélération des recherches dans le domaine des accumulateurs. Dans cette quête de sources d’énergie embarquées pour des applications grand public, les critères de performance tels que la densité d’énergie, la cyclabilité, le coût sont d’abord privilégiés, avant que la sûreté de ces systèmes ne devienne la préoccupation majeure. Différentes avancées conduisent au développement de filières d’accumulateurs distinctes : la découverte d’électrolytes solides céramiques ouvre la voie aux accumulateurs fonctionnant à haute température, celle d’alliages hydrurables à température ambiante permet la conception des accumulateurs aqueux « alcalins » Ni-MH, la connaissance des matériaux d’intercalation permet la conversion des piles au lithium en système rechargeables, et au bout du compte celle des premiers accumulateurs Li-ion.
3.1 Accumulateurs au sodium « haute température »
Les premiers accumulateurs à électrode négative en métal alcalin à voir réellement le jour sont des systèmes fonctionnant à haute température (> 300 °C). Le plus emblématique d’entre eux est le système sodium soufre (Na-S) inventé et perfectionné par Ford Motors Co. et General Electric dès le milieu des années 1960 . Sa conception tire parti de la découverte des propriétés de conduction ionique de matériaux céramiques, et notamment de l’alumine bêta (β’’-Al2O3) qui est un oxyde mixte d’aluminium et de sodium de composition 11Al2O3-xNa2O (x~1-2) dopé au Mg, dont la structure cristalline présente des chemins de conduction des ions sodium. Sa conductivité est faible à température...
Cet article fait partie de l’offre
Ressources énergétiques et stockage
(191 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
1970-1991 : boom des systèmes rechargeables
BIBLIOGRAPHIE
-
(1) - JASINSKI (R.) - High energy batteries. - Plenum Press (1967).
-
(2) - HARRIS (W.) - * - Thèse de doctorat, Université de Californie (1958).
-
(3) - DEY (A.N.) - * - Thin Solid Films, 43, p. 131-171 (2007).
-
(4) - PELED (E.), STRAZE (H.) - * - J. Electrochem. Soc., 124, p. 1330 (1997).
-
(5) - GABANO (J.P.) - Lithium batteries. - Academic Press (1983).
-
(6) - DECHENAUX (G.), GERBIER (G.), LAURENT (J.) - * - Entropie, 13 (1967).
-
(7) - GABANO (J.P.), GERBIER (G.) - Electrochemical...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Systèmes de stockage sodium-soufre installés au Japon par la société NGK Insulators https://www.ngk.co.jp/nas/case_studies/rokkasho/
Accumulateurs haute température type ZEBRA commercialisés par la société Fiamm Sonick http://www.fiammsonick.com/
Eurobat. A review of batteries for automotive applications http://www.eurobat.org/sites/default/files/a_review_of_batteries_for_automotive_applications_-_full_report_0.pdf (page consultée le 7 mars 2016)
International Renewable Energy Agency (IRENA). Battery storage for renewables : market status and technology outlook http://www.irena.org/documentdownloads/publications/irena_battery_storage_report_2015.pdf (page consultée le 7 mars 2016)
Avicenne Energy – Études de marché dans le domaine des batteries et de l’énergie http://www.avicenne.com/articles_energy.php (page consultée le 7 mars 2016)
HAUT DE PAGECet article fait partie de l’offre
Ressources énergétiques et stockage
(191 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive