| Réf : P229 v1

Méthode avec prise en compte des sensibilités
Méthodes directes d’optimisation - Méthodes dérivées de la méthode Simplex

Auteur(s) : Catherine PORTE

Date de publication : 10 déc. 2002

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Devant l’intérêt, la souplesse, la robustesse et la facilité d’utilisation de la méthode Simplex dans le cas de phénomènes expérimentaux, de nombreux auteurs se sont intéressés à la recherche d’améliorations conduisant à l’élaboration de nouvelles méthodes dérivées. Ces méthodes sont couramment appliquées pour déterminer les conditions expérimentales permettant d’obtenir une valeur optimale de la réponse d’un procédé. L’objet de cet article est de décrire et d’illustrer la méthode Nelder et Mead, la méthode super modified simplex, la méthode multiple-move (ou multi-move), la méthode weighted centroid et la méthode avec prise en compte de la sensibilité.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Catherine PORTE : Docteur ès Sciences Physiques - Maître de conférences - Laboratoire de Chimie Industrielle Génie des Procédés au Conservatoire National des Arts et Métiers

INTRODUCTION

Devant l’intérêt, la souplesse, la robustesse et la facilité d’utilisation de la méthode Simplex dans le cas de phénomènes expérimentaux, de nombreux auteurs se sont intéressés à la recherche d’amélioration en ce qui concerne son efficacité et sa rapidité ce qui a conduit à l’élaboration de nouvelles méthodes dérivées de la méthode Simplex.

L’objet de cet article est de décrire ces méthodes.

Cet article fait suite à l’article Méthodes directes d’optimisation- Méthodes à une variable et Simplex qui traite des méthodes d’optimisation à une variable et de la méthode Simplex.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-p229


Cet article fait partie de l’offre

Qualité et sécurité au laboratoire

(129 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

5. Méthode avec prise en compte des sensibilités

Le lecteur pourra également se reporter à la référence [53].

  • L’auteur [53] propose, pour éviter la dérive de paramètres non influents, de prendre en compte pour la détermination des pas de variation, la sensibilité des variables à identifier.

     

Exemple

application, dans le domaine pétrolier, au calage d’historique de pression

L’auteur a appliqué sa méthode au calage d’historique de pression. Il a ensuite comparé les résultats obtenus par les méthodes Simplex, Modified Simplex et par sa méthode avec prise en compte des sensibilités.

La fonction objectif dépend de quatre variables qui sont les perméabilités nommées k1 à k4. Les coordonnées de l’optimum sont connues, respectivement 400, 300, 200 et 100, la valeur de la fonction objectif en ce point est de 0.

Pour le point de départ, les valeurs des perméabilités sont fixées à 50 mD.

La première étape consiste à déterminer les sensibilités respectives des quatre variables afin de fixer les pas de variation pour chaque variable. Pour cela, un premier simplex est construit avec un pas de variation de 50 mD pour chacune des variables. Les réponses en chacun des sommets du simplex sont calculées et données dans le tableau 5 A.

La sensibilité est déterminée par l’écart de la fonction objectif F pour une unité de variation de la variable considérée, toutes les autres variables ayant été maintenues à la même valeur.

Ici, on a :pour k1, une sensibilité soit s1 = 645

pour k2, une sensibilité soit s2 = 75pour k3, une sensibilité ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Qualité et sécurité au laboratoire

(129 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Méthode avec prise en compte des sensibilités
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - WILDE (D.J.), BEIGHTLER (C.S.) -   Foundations of Optimization  -  , 1967. Prentice-Hall.

  • (2) - FLETCHER (R.) -   Practical Methods of Optimization  -  , vol 1, Unconstrained optimization, 1980, John Wiley & Sons Ltd.

  • (3) - RAY (W.H.), SZEKELY (J.) -   Process Optimization  -  . 1973 John Wiley & Sons, Inc.

  • (4) - RUDD (D.F.), WATSON (C.C.) -   Strategy of process engineering  -  . 1968 John Wiley & Sons.

  • (5) - BOX (M.J.), DAVIES (D.), SWANN (W.H.) -   Techniques d’optimisation non linéaire  -  . Monographie I.C.I., 1971 no 5. Entreprise Moderne d’Édition.

  • (6) - KUESTER (J.L.), MIZE (J.H.) -   Optimizations techniques with FORTRAN  -  . 1971 McGraw Hill.

  • ...

DANS NOS BASES DOCUMENTAIRES

  • *

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Qualité et sécurité au laboratoire

(129 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS