Présentation

Article

1 - PRINCIPES GÉNÉRAUX DES PROCÉDÉS D’INJECTION ASSISTÉE PAR GAZ

2 - MATÉRIELS ET PÉRIPHÉRIQUES

3 - SPÉCIFICITÉS DE CONCEPTION. CONTRAINTES

4 - PRINCIPAUX PARAMÈTRES DE MISE EN ŒUVRE

5 - DÉFAUTS OBSERVÉS LORS DE LA MISE EN ŒUVRE. SOLUTIONS

6 - OUTILS DE SIMULATION

7 - DOMAINES D’APPLICATIONS

8 - CONCLUSION

| Réf : AM3693 v1

Spécificités de conception. Contraintes
Injection assistée par gaz

Auteur(s) : Jean-Luc DREYER

Date de publication : 10 avr. 2006

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

L'injection assistée par gaz est un procédé apparu fin des années 80. Le but premier de ce procédé était de réaliser des gains matières et éventuellement de temps de cycle. Très rapidement, de nombreuses difficultés sont apparues : contraintes juridiques, maîtrise des paramètres du procédé, technologie des injecteurs pour ne citer que les plus fréquentes. En parallèle, des travaux réalisés soit en bureau d'études, soit en laboratoire de recherche ont permis d'élargir le champ d'applications du procédé. Aujourd'hui, de nouveaux procédés sont étudiés, l'injection assistée par eau, mais aussi les procédés d'injection microcellulaire, la bi-injection assistée par gaz ou agents gonflants permettent d'entrevoir de nouvelles possibilités et ainsi compenser les limites de l'injection assistée par gaz.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Gas Assisted Injection Molding

The process of gas-assisted injection molding appeared in the 80s. The major aim of this process was to save material and reduce cycle time. Many difficulties soon appeared: patent issues, management of process parameters, gas pin technology, etc. Meanwhile work done in engineering design offices and laboratories has broadened the scope of application of this process.

Auteur(s)

INTRODUCTION

Les premières applications de l’injection assistée par gaz (IAG) n’avaient qu’un seul but, économiser de la matière. Mais très rapidement, elles se multiplièrent et, aujourd’hui, l’injection assistée par gaz pourra être utilisée pour :

  • améliorer la phase de maintien en pression et diminuer les retassures ;

  • diminuer les temps de cycle en assurant un meilleur contact polymère- outillage ;

  • augmenter la rigidité en créant un effet tube.

Cette technique de transformation peut être mise en œuvre par différents procédés présentant évidemment des avantages et des inconvénients. Afin de faciliter la compréhension des phénomènes, nous porterons toute notre attention sur le procédé de remplissage partiel, procédé quasi libre de contraintes juridiques. Ce procédé permet de cumuler tous les avantages de l’injection assistée par gaz :

  • diminution du poids de la pièce ;

  • diminution du temps de cycle, car moins de matière injectée nécessaire ;

  • diminution de la force de fermeture pour la même raison ;

  • diminution des retassures ; le gaz va pouvoir être guidé dans les zones critiques ;

  • augmentation de la rigidité à moment quadratique équivalent ;

  • amélioration de l’aspect.

L’injection assistée par gaz est un procédé où toute étape doit être optimisée, de la conception de la pièce au choix de la matière, et de l’optimisation de l’outillage jusqu’au choix de la presse à injecter. Il suffit d’un seul paramètre négligé pour risquer une production aléatoire, voire de mauvaise qualité. Le choix de la matière est primordial, surtout pour les polymères chargés. Choisir la matière générique (ou d’entrée de gamme) pour une pièce technique optimisée conduit souvent vers une impasse. Les défauts d’aspect ont une telle influence que la totalité du projet peut être remise en cause. Ce procédé trouve aujourd’hui une seconde jeunesse, après un démarrage très rapide suivi par une longue période de désillusions. En plus des difficultés techniques s’est greffé un problème de protection industrielle.

Le procédé se démocratise et l’on trouve des applications dans des domaines aussi variés que celui du jouet, de l’électroménager, du médical, du bricolage et de l’ameublement. Il y a encore dix ans, on considérait que le procédé était « réservé » à l’automobile et aux façades de téléviseurs.

Nota :

Pour de plus amples renseignements, le lecteur pourra se reporter aux dossiers traitant de la modélisation de l’injection dans ce traité.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

nitrogen   |   injection parameters   |   biinjection   |   mold   |   rheology   |   mold cooling

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-am3693


Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

3. Spécificités de conception. Contraintes

La conception d’une pièce destinée à être produite par le procédé d’injection assistée par gaz demande de prendre certaines précautions. Afin de simplifier, nous allons distinguer deux grandes familles géométriques de pièces :

  • les grandes pièces planes avec nervures ;

  • les pièces tubulaires.

3.1 Grandes pièces planes

Le but, en injection assistée par gaz, pour ce type de pièces est d’en augmenter la rigidité. Les gains en matière et en temps de cycle sont souvent négligeables. Il faut toujours avoir à l’esprit que le gaz va faciliter le remplissage en apportant un niveau de pression correct jusqu’au dernier point rempli par la matière.

Exemple

table de jardin (figure 9).

Injecter une telle pièce demande une très importante force de fermeture et injecter du gaz quelques instants avant la commutation en pression permet de la limiter.

Exemple

entre un cadre de toit ouvrant en injection classique et un modèle réalisé en injection assistée par gaz, la force de fermeture passe de 1 700 t à 1 150 t, soit un gain de plus de 30 %

Injecter du gaz dans ce type de pièce permet parfois de pallier à un manque de compactage et ainsi de supprimer des défauts tels que retassures et/ou déformations. Un autre exemple type de cette application est la façade de téléviseur où l’azote sous pression circule dans des canaux sur le pourtour de la pièce permettant un compactage correct au droit des différentes nervures et fûts de fixation.

Le dimensionnement des veines de gaz est essentiellement fonction du polymère injecté. Quelle que soit la section de passage, à cœur subsistera une gaine fluide que le gaz pourra repousser. À partir du moment où le gaz sera présent, on pourra avoir la certitude que le compactage de la zone sera optimal.

La figure 10 montre quelques exemples de canaux de gaz.

Sous l’effet de la pression, le polymère fondu avancera toujours plus facilement dans des canaux de 10 mm de diamètre que dans une épaisseur de 3 mm. Il est donc indispensable d’étudier avec soin le remplissage de la cavité. Cette étude permettra de déterminer le diamètre hydraulique idéal de la veine de gaz et ainsi éviter...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Spécificités de conception. Contraintes
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - AVERY (J.) -   Gas assist injection molding, principles and applications.  -  Hanser (2001).

  • (2) - BATTENFELD -   Technique d’injection des années 1990  -  , 1990.

  • (3) - KLÖECKNER FERROMATIK -   Système Airpress.  -   

  • (4) - HYDAC – BEFA -   Système d’injection et de récupération d’azote.  -   

  • (5) - Du PONT de NEMOURS -   Moulage avec injection de gaz des polymères techniques de Du Pont de Nemours.  -  Rapport technique TRG 3060.

  • (6) - ECKARDT (H.) -   Pression interne de gaz en continu pour injection.  -  Meinerzhagen, Plast Europe, juin 1993.

  • (7)...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS