Présentation

Article

1 - ÉBULLITION CONVECTIVE

2 - ÉBULLITION CONVECTIVE POUR DES TUBES VERTICAUX

3 - ÉBULLITION CONVECTIVE POUR DES TUBES HORIZONTAUX

4 - ÉBULLITION CONVECTIVE DES MÉLANGES

5 - ÉBULLITION CONVECTIVE EN MINI- ET MICROCANAUX

6 - AMÉLIORATION DES TRANSFERTS EN ÉBULLITION PAR JET IMPACTANT

| Réf : BE8236 v1

Ébullition convective des mélanges
Transferts en changement de phase - Ébullition convective

Auteur(s) : Monique LALLEMAND

Date de publication : 10 avr. 2006

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Pour assurer le refroidissement d’ambiances, de liquides, de systèmes, on a très souvent recours à l’ébullition convective, qui conduit à des transferts thermiques plus efficaces qu’en ébullition libre. Ce régime d’ébullition possède de nombreuses variantes. Cependant, deux mécanismes interdépendants prédominent, celui de la convection forcée et celui d’un processus d’ébullition nucléée contrôlé par la différence de températures entre la paroi et le fluide, les propriétés du liquide, la mouillabilité de la paroi. Par ailleurs, la géométrie des systèmes (ébullition intratubulaire, extratubulaire) et leur orientation modifient eux aussi notablement les transferts thermiques en ébullition.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Monique LALLEMAND : Ingénieur, Docteur-ès-Sciences - Professeur des Universités à l’Institut National des Sciences Appliquées

INTRODUCTION

L’ébullition convective est largement utilisée pour assurer le refroidissement d’ambiances, de liquides, de systèmes, grâce à des transferts thermiques plus efficaces qu’en ébullition libre. Dans le domaine industriel, la conception de réacteurs nucléaires refroidis par eau, de machines frigorifiques ou pompes à chaleur, de bouilleurs dans l’industrie pétrochimique et de nombreuses installations du génie des procédés est basée sur les connaissances des mécanismes contrôlant l’ébullition convective. En ébullition convective, les échanges thermiques dépendent d’une part, du phénomène de convection forcée, d’autre part, du processus d’ébullition nucléée à partir d’une paroi suffisamment chauffée pour qu’il y ait génération de vapeur. Ces deux mécanismes sont étroitement dépendant l’un de l’autre du fait de la coexistence des deux phases. En plus des forces visqueuses, d’inertie, de pression caractérisant les écoulements monophasiques, les écoulements diphasiques sont soumis aux forces de tension interfaciales et à l’échange de quantité de mouvement entre les deux phases. Les transferts thermiques en ébullition nucléée sont principalement contrôlés par la différence de températures entre la paroi et le fluide, les propriétés du liquide, la mouillabilité de la paroi. Pour l’ébullition convective, les vitesses de chaque phase et leur distribution jouent un rôle majeur, ce qui nécessite la connaissance des configurations d’écoulement en fonction de la position du système, qui le plus souvent est horizontale ou verticale. Les mécanismes d’ébullition associés conduisent à différents régimes d’ébullition qui doivent être étudiés séparément. Par ailleurs, la géométrie des systèmes (ébullition intratubulaire, extratubulaire) et leur orientation modifient notablement les transferts thermiques en ébullition. Les mélanges de fluides revêtent une grande importance dans de nombreuses applications chimiques, pétrochimiques et dans les procédés industriels. Du fait d’un comportement différent des corps purs qui les composent, ils doivent faire l’objet de développements spécifiques en ébullition convective. Enfin, depuis quelques décennies sont apparues des méthodes de refroidissement diphasiques plus efficaces telles que les écoulements en microcanaux ou les jets impactants, qui seront présentées.

Pour le tableau de notations et symboles, le lecteur se reportera au « Pour en savoir plus » .

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-be8236


Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

4. Ébullition convective des mélanges

4.1 Transferts de chaleur en ébullition convective

Pour les mélanges de fluides, les coefficients d’échange obtenus expérimentalement sont notablement plus faibles que pour les corps purs, mais cette dégradation varie avec la composition du mélange. Par rapport aux corps purs, la vaporisation d’un fluide multicomposants est très complexe du fait des transferts de masses des espèces en présence.

VDI-Heat Atlas [72] recommande pour les mélanges l’utilisation d’un modèle de superposition des effets d’ébullition nucléée et de transferts convectifs, tel le modèle de Chen établi pour un corps pur. La contribution de l’ébullition nucléée doit être modifiée. En effet, comme le composant qui a la température de saturation la plus faible se vaporise en premier, le liquide proche de la paroi s’enrichit en composant à température de saturation la plus élevée, ce qui modifie le gradient de températures au voisinage de la paroi et le facteur de suppression de l’ébullition nucléée S. Cet effet est surtout marqué aux faibles titres. Le terme correspondant à la contribution des transferts convectifs est également modifié, mais il a été observé expérimentalement que la dégradation des échanges convectifs est plus faible lorsque le titre augmente. Ainsi, l’effet de la diffusion de masse est plus important sur le terme hen que sur le terme de l’équation [15].

Une première approche consiste à déterminer les coefficients d’échange des corps purs à partir des corrélations usuelles, à les ajouter selon une loi de mélange idéal et à ajouter un terme correctif traduisant la réduction des transferts en raison de la limitation de la vitesse de croissance...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Ébullition convective des mélanges
Sommaire
Sommaire

1  

HAUT DE PAGE

2 Références bibliographiques

APRIN (L.) - Étude expérimentale de l’ébullition d’hydrocarbures sur un faisceau de tubes horizontaux. Influence de la nature du fluide et de l’état de surface - . Thèse de Doctorat, Aix-Marseille I (nov. 2003).

BAKER (O.) - Simultaneous flow of oil and gas - . Oil gas J 53 (1954), 185.

BAROCZY (C.J.) - A systematic correlation for two-phase pressure drop - . Chem. Eng. Prog. Symp. Ser., 62 (1966), 232-249.

BERGLES (A.E.) - ROHSENOW (W.M.) - The determination of forced-convection surface-boiling heat transfer - . J. Heat Transfer, 86 (1964), 365-372.

BOWRING (R.W.) - A simple but accurate round tube uniform heat flux dry-out correlation over the pressure range 0.717 MN/m2 - . Br Report AEEW-R789, Winfrith, UK (1972).

BROMLEY (J.A.) - Heat transfer in stable film boiling - . Chem. Eng. Prog., 46, 5 (1950), 221-227.

BRUTIN (D.) - Écoulements liquides en microtubes et ébullition convective en minicanaux : étude expérimentale et modélisation - . Thèse de Doctorat, Université de Provence (oct. 2003), 274 p.

BURNSIDE (B.M.) - 2-D kettle reboiler circulation model - . Int. J. Heat and Fluid Flow, 20 (1999), 437-445.

Van CAREY (P.) - Liquid-vapor phase-change phenomena - . Taylor et Francis (1992).

CELATA (G.P.) - CUMO (M.) - MARIANI (A.) - Burnout in highly subcooled water flow boiling in small diameter tubes - . Int. J. Heat Mass Transfer, 36, 5 (1993), 1269-1285.

CELATA (G.P.) - CUMO (M.) - MARIANI (A.) - Enhancement of CHF water subcooled flow boiling in tubes using helically coiled wires - . Int. J. Heat Mass Transfer, 37, 1 (1993), 53-67.

CHEN (J.C.) - Correlation of boiling heat transfer to...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS