Présentation

Article

1 - RÉGIMES D’ÉCOULEMENT

2 - COUCHES LIMITES

3 - ÉCOULEMENTS LAMINAIRES

4 - ÉCOULEMENTS TURBULENTS

5 - ÉCOULEMENTS RÉACTIFS

| Réf : BE8157 v1

Écoulements turbulents
Écoulement des fluides - Dynamique des fluides réels

Auteur(s) : André LALLEMAND

Date de publication : 10 janv. 2000

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

L'article débute par des considérations sur les différents régimes d'écoulement, puis par une étude de la cinématique, de la dynamique et de la thermique des couches limites. Les écoulements laminaires sont étudiés à travers l'écoulement de Poiseuille et celui de Hagen-Poiseuille. L'analyse des écoulements turbulents commence par la considération des échelles de turbulence et le point de vue statistique avec les équations de Reynolds appliquées aux bilans de la masse, de la quantité de mouvement et de l'énergie. Différents modèles de fermeture sont proposés, l'accent étant mis sur le modèle k, ?. Enfin, la prise en compte de modifications dans la composition du fluide au cours de l'écoulement termine cet article.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • André LALLEMAND : Ingénieur, Docteur ès sciences - Professeur des universités à l’Institut national des sciences appliquées de Lyon

INTRODUCTION

La dynamique des fluides réels est dominée par les forces de viscosité moléculaire, d’une part, par leur importance vis-à-vis des forces d’inertie de l’écoulement, d’autre part. Lorsque les forces de viscosité sont importantes par rapport aux forces d’inertie, l’écoulement est régulier, le champ des vitesses, ou plus généralement des paramètres du fluide, varie de façon monotone aussi bien dans l’espace que, éventuellement, dans le temps. Dans ce type d’écoulement, dit laminaire, toute instabilité est dissipée par la viscosité du fluide. Ceci n’est pas le cas dès que les forces d’inertie deviennent importantes par rapport aux forces de viscosité. Les instabilités, inévitables en pratique, se développent sous forme de tourbillons de tailles variées : l’écoulement devient turbulent. Dans ce mode d’écoulement, tous les transferts sont améliorés, ce qui est un avantage, mais les irréversibilités sont plus importantes, ce qui est évidemment un inconvénient.

Du fait de la viscosité, toute présence de paroi matérielle implique une évolution relativement forte dans le champ des vitesses. Si l’écoulement est du type « externe », c’est-à-dire lorsque les parois n’occupent qu’une petite partie de l’écoulement, les variations ne se font sentir que dans une zone proche des parois appelée couche limite. En dehors de cette couche limite, l’écoulement se comporte comme un écoulement de gaz parfait. Dans les écoulements « internes », pour lesquels les parois délimitent une zone d’écoulement relativement faible, tout le champ des vitesses est soumis à des gradients.

Quel que soit le type d’écoulement, les équations générales de bilans (masse, quantité de mouvement et énergie) sont applicables. La résolution analytique de ces équations aux dérivées partielles, généralement couplées, est cependant impossible dans la très grande majorité des cas pratiques. Des résolutions numériques s’imposent alors. Ceci est vrai pour les écoulements laminaires ; cela devient une règle générale pour les écoulements turbulents. En effet, les fluctuations des paramètres thermocinématiques du fluide introduisent des inconnues supplémentaires qui compliquent de façon très importante la résolution. La méthode la plus employée actuellement dans les problèmes industriels est la méthode statistique dans laquelle on ne s’intéresse plus qu’aux valeurs moyennes des paramètres de l’écoulement. Du fait de la non-linéarité des équations de base, cette méthode impose de modéliser les fluctuations et d’introduire un certain nombre d’équations supplémentaires, dites équations de fermeture, et de coefficients qui nécessitent un calage sur l’expérience. Parmi les différents modèles étudiés et proposés par les spécialistes, le plus courant est celui qui utilise la notion de viscosité turbulente et des équations de fermeture basées sur les transferts de l’énergie cinétique turbulente k et de son taux de dissipation ε. Pour faciliter la résolution de problèmes industriels, divers logiciels sont proposés par des sociétés spécialisées dans ce domaine.

Pour les notations et symboles, se reporter en fin d’article.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-be8157


Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

4. Écoulements turbulents

4.1 Définitions. Généralités

La turbulence, dans un écoulement, revêt un caractère essentiellement aléatoire toujours tridimensionnel. Elle se développe aux nombres de Reynolds relativement élevés et est une propriété de l’écoulement et non pas du fluide comme l’est la viscosité par exemple. On constate que la turbulence augmente la capacité de transport à l’intérieur du fluide par augmentation des termes de diffusion (diffusion de quantité de mouvement, diffusion de chaleur, etc.) et augmente également la dissipation d’énergie mécanique en énergie thermique.

Ainsi, et comme cela a aussi été indiqué au début de cet article, un écoulement turbulent est un écoulement instationnaire dans lequel, selon la théorie de Reynolds encore appelée théorie statistique, on peut mettre en évidence des valeurs moyennes des paramètres auxquelles se superposent des fluctuations. L’échelle des fluctuations étant grande par rapport au libre parcours moyen des molécules, l’hypothèse locale d’homogénéité est encore vérifiée et on peut appliquer, aux paramètres instantanés, les équations fondamentales, du type Navier-Stokes, de la mécanique des fluides. Le traitement de ces équations peut être de deux natures différentes.

HAUT DE PAGE

4.1.1 Traitement direct ou simulation

Dans ce cas, les grandeurs utilisées dans les équations de bilans sont les grandeurs instantanées et la résolution est numérique. On a affaire à de la simulation numérique directe (SND). Mais, compte tenu, d’une part de la non-linéarité des équations de la quantité de mouvement notamment, d’autre part, de l’échelle de turbulence qui est très faible, il est impossible dans l’état actuel des moyens de calcul de connaître rigoureusement le mouvement du fluide sur des grandes distances ou sur un temps très long à partir de conditions aux limites et initiales données. Par ailleurs, toute perturbation, même faible, a de ce fait, des conséquences importantes qui rendent imprévisible le mouvement à long terme et sur de longues distances (impossibilité...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Écoulements turbulents
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - CANDEL (S.) -   Mécanique des fluides.  -  Dunod Université (1990).

  • (2) - PADET (J.) -   Fluides en écoulement.  -  Masson (1990).

  • (3) - COUSTEIX (J.) -   Couche limite laminaire.  -  Cepadues-Éditions, Toulouse (1988).

  • (4) - GOUYON (E.), HULIN (J.-P.), PETIT (L.) -   Hydrodynamique Physique.  -  CNRS Éditions (1991).

  • (5) - LESIEUR (M.) -   La turbulence.  -  Presses Universitaires de Grenoble (1994).

  • (6) - SCHISTEL (R.) -   Les écoulements turbulents. Modélisation et simulation.  -  Hermès (1998).

  • (7) - COUSTEIX (J.) -   Turbulence...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS