Présentation

Article

1 - CONTEXTE

2 - PRINCIPAUX ÉLÉMENTS D’UNE SOURCE LASER

3 - TRANSITIONS D’ABSORPTION ET D’ÉMISSION DES CENTRES ACTIFS

4 - POPULATION D’UN NIVEAU D’ÉNERGIE

5 - COEFFICIENTS D’EINSTEIN D’ABSORPTION, D’ÉMISSION SPONTANÉE ET D’ÉMISSION STIMULÉE (OU INDUITE)

6 - CAVITÉ RÉSONNANTE ET INTENSITÉ ÉMISE PAR LE FAISCEAU LASER

7 - CONCLUSION

| Réf : AF3275 v1

Transitions d’absorption et d’émission des centres actifs
Sources lasers à l’état solide. Fondements

Auteur(s) : Georges BOULON

Date de publication : 10 janv. 2006

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Cet article présente la physique fondamentale des sources lasers à l’état solide, incluant les bases de l’émission laser et les propriétés optiques et électroniques des matériaux lasers. Les principales parties traitent spécifiquement des matériaux lasers comme les cristaux et les verres dopés par les ions de transition ou les ions de terres rares, l’histoire, les diagrammes de niveaux d’énergie, la population des niveaux d’énergie, l’inversion de population, les systèmes à 3 et 4 niveaux, les mécanismes d’absorption et d’émission, les émissions spontanées et stimulées, l’amplification, la cavité laser, l’optique des faisceaux lasers gaussiens, les modes et la cohérence des faisceaux lasers.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Georges BOULON : Professeur des Universités - Laboratoire de Physico-Chimie des Matériaux Luminescents - Université Claude Bernard Lyon 1 - Unité Mixte de Recherche CNRS 5620

INTRODUCTION

Cet article sur la physique du laser est l’un des six articles relatif à la présentation générale des sources laser à l’état solide qui inclut en outre la luminescence cristalline appliquée aux sources lasers, les cristaux et l’optique non linéaire, et la génération des impulsions laser d’abord jusqu’à la picoseconde puis jusqu’aux ultra-brèves à l’échelle de la femtoseconde. Il a pour objectif de situer le thème des sources laser à l’état solide et de décrire les principaux paramètres physiques, essentiellement optiques, nécessaires à une bonne compréhension de leur fonctionnement.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af3275


Cet article fait partie de l’offre

Physique Chimie

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

3. Transitions d’absorption et d’émission des centres actifs

On représente le diagramme des niveaux d’énergie de l’ion actif selon le schéma de la figure 3. Les transitions spectrales observées dans le spectre d’émission sont dessinées par des flèches verticales descendantes. La longueur d’onde λ en nanomètres de l’onde lumineuse (λ = c/ν) et le nombre d’onde σ = 1/λ sont associés au photon d’énergie hν par :

avec :

h
 : 
constante de Planck (h = 6,62 × 10–34 J × s)
ν
 : 
fréquence
c
 : 
vitesse de la lumière dans le vide (c » 3 × 108 m/s). 
Exemple

Pour fixer un ordre de grandeur, à λ = 5 000 A˚ = 500 nm = 0,5 µm correspond un nombre d’onde σ = 20 000 cm–1, une fréquence = 6 × 1014 Hz et donc un photon d’énergie 2,47 eV, c’est-à-dire 4 × 10–19 J.

Inversement un photon dont l’énergie correspond à la différence entre E1, énergie minimale pour laquelle l’atome est initialement stable et celle En d’un état excité, peut être absorbé par l’atome :

1n = En – E1

Les transitions d’absorption sont donc en nombre plus faible que celles d’émission puisque dans les conditions habituelles l’état initial ne peut être que dans le niveau fondamental tandis que sous excitation par une cause extérieure, l’atome rencontre toutes...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Transitions d’absorption et d’émission des centres actifs
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) -   Les Lasers et Leurs Applications Scientifiques et Médicales,  -  Édition C. Fabre et J. P. Pocholle, Les Éditions de Physique (Paris) (1996). 1.1 C. Fabre, Les Lasers -Principes Fondamentaux, pp. 1-40. 1.2 G. Boulon, Matériaux pour Lasers à Solide, pp. 259-286. 1.3. H. Monerie, Fibres optiques dopées et applications, pp. 357-382.

  • (2) - BOULON (G.) -   Les solides luminescents iorganiques : un dopage réussi.  -  Numéro spécial de L’Actualité Chimique, no 11 et Lettre des Sciences Chimiques du CNRS, no 72 (1999) pp. 96-105.

  • (3) - KOECHNER (W.) -   Solid State Laser Engineering.  -  Springer, Berlin (1976).

  • (4) - SIEGMANN (A.E.) -   An Introduction to Lasers and masers,  -  Mc Graw Hill, New York (1971).

  • (5) - KAMINSKII (A.A.) -   Laser Crystals.  -  Their physics and Spectroscopy, Springer-Verlag (1981) and (1990).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS