Présentation
Auteur(s)
-
Georges ZISSIS : Professeur des Universités - Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Énergie)
-
Xavier DE LOGIVIERE : Fondateur et animateur de la Communauté Gallium Nitride Community (Linkedin)
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
En 1968, la première diode électroluminescente commercialisée produisit une lumière rouge d'à peine 1 mlm. Aujourd'hui, des LED blanches de haute brillance sont disponibles sur le marché et produisent plusieurs centaines de lumens. Il s'agit d'une vraie révolution : en effet, le flux lumineux produit double tous les 18-24 mois et cela depuis presque 30 ans maintenant. Les LED vont-elles remplacer les lampes classiques (incandescence et décharge électrique) ? Dans ce dossier, nous prenons en compte non seulement des considérations technologiques et scientifiques, mais nous plaçons cette source de lumière innovante dans les contextes énergétiques et économiques contemporains.
In 1968, the first commercially available light-emitting diode generated just 1 mlm of red light. Today, white high-brightness LED are available on the market and produce several hundred lumens. This is a real revolution : indeed, the light output quantity doubles every 18-24 months and this for almost 30 years now. LED will replace conventional lamps (incandescent and electric discharge) ? In this paper we try answer this question by taking into account not only technological and scientific considerations, but also we will place this innovative light source in the energy and economic today's contexts.
Diodes électroluminescentes, Éclairage, Lumière blanche, Photonique
Light emitting diodes, Lighting, White light, Photonics
Domaine : Bâtiment, Urbanisme, Énergie
Degré de diffusion de la technologie : Émergence | Croissance | Maturité
Technologies impliquées : Photonique, Semi-conducteurs, Diodes électroluminescentes
Domaines d'application : Éclairage général, signalisation, éclairage architectural et décoratif
Principaux acteurs français :
Pôles de compétitivité : DERBI, Route des Lasers
Centres de compétence : Cluster Lumière (Lyon), Cluster Bâtiment Économe (Toulouse)
Industriels : Fabricants des sources de lumière ; Fabricants de systèmes d'éclairage ; Bureau d'études sur l'éclairage : producteurs d'énergie ; producteurs d'alimentations électroniques ; producteurs de luminophores
Institutionnels : ADEME, Syndicat de l'Éclairage, Association Française de l'Éclairage, CEA-LETI, Services techniques de ville et syndicats d'électrification
Autres acteurs dans le monde : Industrie du semi-conducteur et systèmes associés, industrie mondiale de l'éclairage
Contact : [email protected] et [email protected]
L'émission de lumière par les semi-conducteurs est un phénomène connu depuis plus de 100 ans.
« Messieurs : pendant l'investigation du passage asymétrique du courant au travers d'un contact de carborundum ou d'autres substances, un phénomène bizarre a été observé. En appliquant une différence de potentiel de 10 V entre deux points du cristal de carborundum, ce dernier a émis une lumière jaunâtre... ».
C'est ainsi qu'en 1907, le capitaine Henry Joseph Round (Marconi Co, UK) rapporta la première émission de lumière par un cristal semi-conducteur : le carborundum, mieux connu aujourd'hui sous le nom « carbure de silicium (SiC) » . Le premier brevet sur le sujet a été déposé en 1929 par un radio-technicien Russe Oleg Vladimirovich Losev . Cependant, sans explication physique du phénomène qui semblait être intermittent et capricieux, cette découverte fut rapidement oubliée.Par ailleurs, les efforts ont été concentrés sur l'émission du SiC sans beaucoup de réussite car, comme nous le savons aujourd'hui, il s'agit d'un semi-conducteur à gap indirect difficile à maîtriser. Ainsi, bien que de la lumière bleue (les LED blanches de puissance utilisent de la lumière bleue émise par la jonction couplée à un luminophore) a été obtenue depuis 1923 par Lossev , l'efficacité de conversion à 470 nm n'a jamais dépassé 0,03 % . Ce n'est qu'à partir des années 1954 que les chercheurs s'intéressent aux jonctions utilisant des matériaux des groupes III-V. Ainsi, en 1962, Nathan et al. rapportent la création d'une diode émettant dans le domaine de l'infrarouge basée sur une jonction GaAs .
Dans cette même année, Nick Holonyak et S.F. Bevacqua, consultants à General Electric signent « l'acte officiel » de naissance de la diode électroluminescente émettant dans le rouge (une jonction faite d'un alliage GaAs et GaP) .
En 1968, la première LED produisait une très faible lumière rouge d'à peine 0,001 lm ; impossible même de songer à une application éclairagiste. Bien que le flux lumineux augmentait avec une vitesse frénétique, les LED se cantonnaient à des applications signalétiques. En 1972, George Craford invente la LED jaune qui est 10 fois plus brillante que les LED rouges oranges existantes.
Bien qu'Herbert Maruska (RCA Labs) a démontré en 1972 la possibilité d'obtenir une intense émission bleue violette par un film mince de GaN dopé au magnésium , l'histoire attribuera l'invention de la LED bleue de puissance, basée sur une jonction InGaN/n-GaN avec une efficacité de conversion électricité-lumière bleue de 10 %, à Shuji Nakamura de Nichia . Cette annonce ouvre la voie vers la production de composants de puissance et de la lumière blanche.
L'éclairage devient ainsi une cible accessible en offrant une voie de croissance inespérée à l'industrie du semi-conducteur déprimée par la crise des télécommunications vers la fin du XXe siècle.
Incités par l'industrie, les pouvoirs publics ont massivement investi dans la R pour la réalisation de systèmes d'éclairage à LED fiables et efficaces. Une longue phase de maturation démarrait.
Aujourd'hui, tous les indicateurs montrent que cette phase touche à sa fin. Ainsi, les LED blanches, destinées aux applications de l'éclairage, se surpassent sans cesse ; les records sont battus régulièrement : le 16 mai 2011, l'américain Cree annonçait une LED blanche (blanc froid dont la température de couleur est 4 700 K) de puissance avec une efficacité de 231 lm/W à 350 mA et 25 oC.
VERSIONS
- Version archivée 1 de mai 2004 par Georges ZISSIS
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Principes de fonctionnement des LED
3.1 Homojonction
L'élément de base de toute diode électroluminescente est un semi-conducteur ayant deux régions de conductivité différente (de type p et n) et une région de recombinaison radiative des porteurs n (électrons) et p (trous). Dans son expression la plus simple, le design d'une LED se réduit à la jonction d'un semi-conducteur dopé de type p avec le même semi-conducteur dopé n. Il s'agit d'une diode électroluminescente dite homojonction. Les LED classiques utilisent encore aujourd'hui cette structure mais, comme nous le verrons plus loin, les nouvelles diodes de forte intensité utilisent des jonctions bien plus complexes.
La figure 6 illustre le principe de fonctionnement d'une homojonction. À l'état d'équilibre, les porteurs majoritaires de chaque zone diffusent vers l'autre zone : les électrons de la zone n ont tendance à diffuser vers la zone p, les trous suivent le chemin inverse. Ces mouvements spontanés perturbent la neutralité électrique locale du système et sont à l'origine de l'apparition d'un champ de charge espace qui s'oppose, à son tour, à ces mouvements, et le système s'équilibre.
Un champ de charge espace est un champ électrique créé à l'intérieur d'une accumulation de charges électriques, souvent décrit comme un « nuage », électriquement neutre d'un point de vue macroscopique.
Par conséquent, le nombre de porteurs minoritaires dans chaque zone (électrons dans la zone p et trous dans la zone n) reste extrêmement faible et la probabilité de recombinaison radiative est quasi nulle. Dans le cas d'une jonction idéale avec de longues zones neutres, les densités des courants inverses liées à la diffusion, jn0 et jp0 , de chaque type de porteur dépendent, entre autres, du carré de la densité des porteurs.
En appliquant maintenant à la jonction une tension de polarisation directe V, la barrière de potentiel s'abaisse d'une valeur égale à eV. Par conséquent, le courant de diffusion des porteurs majoritaires de chaque côté de la barrière vers la zone opposée augmente d'un facteur proportionnel à exp(eV/kBT ), où T est la température de la jonction exprimée en kelvins et kB la constante de Boltzmann.
Cette augmentation du courant de diffusion déséquilibre...
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Principes de fonctionnement des LED
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive