Présentation

Article

1 - SPÉCIFICITÉ DES IONS TERRES RARES

2 - NIVEAUX D’ÉNERGIE DES IONS TERRES RARES

3 - TRANSITIONS OPTIQUES ENTRE NIVEAUX DES TERRES RARES

4 - INTERACTIONS ENTRE IONS DE TERRES RARES

5 - MATRICES HÔTES POUR LES IONS TERRES RARES

6 - APPLICATIONS DES IONS TERRES RARES AUX LASERS ET À L’AMPLIFICATION OPTIQUE

7 - ÉVOLUTIONS ET RECHERCHES NOUVELLES EN COURS. CONCLUSION

| Réf : E1980 v1

Transitions optiques entre niveaux des terres rares
Propriétés optiques des terres rares

Auteur(s) : François AUZEL

Date de publication : 10 mai 1998

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • François AUZEL : Ingénieur en Chef - Expert pour la Direction de France Télécom/ CNET/ DTD/ BAG

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Pour schématiser, on peut dire que jusqu’avant l’ère du laser en 1962, les terres rares étaient considérées comme une curiosité scientifique de par le cas spécial qu’elles représentent dans le tableau de Mendeleïev. Depuis cette date et jusqu’en 1988, l’optique des terres rares a été dominée par le développement des lasers pompés par des lampes du type « corps noir » mettant essentiellement en jeu l’ion néodyme trivalent (Nd 3+). Plus particulièrement les lasers YAG : Nd (Yttrium-Aluminium Garnet : néodyme) ont montré leur utilité dans de nombreuses applications dans les laboratoires de physique soit en régime continu (CW) soit en impulsions brèves pour la génération d’harmoniques ou les effets d’optique non linéaires, mais aussi de manière plus appliquée pour la télémétrie, les soudures, le perçage, la médecine.

Depuis 1988, on peut distinguer une deuxième période, qui a vu la mise en jeu des sources de pompage monochromatique très efficaces que constituent les lasers à semi-conducteurs III-V. Ces sources, associées au confinement optique procuré par les fibres optiques, ont permis le développement de lasers et amplificateurs optiques basés sur d’autres ions du groupe des terres rares mais surtout l’erbium (Er 3+), très utilisé dès 1992 dans les télécommunications optiques à grandes distances. Ces évolutions justifient cette revue de synthèse sur les principes de l’optique des terres rares. Un historique plus détaillé de cette évolution peut être trouvé dans [1].

En parallèle, avec le développement des sources de lumière cohérentes, les terres rares (TR) se révélaient aussi être très utiles pour la création de nouveaux luminophores appliqués à l’éclairage (lampe à basse consommation), pour la télévision en couleur (luminophores pour tubes cathodiques à vision directe ou à projection, convertisseurs-amplificateurs de rayons X à usage médical. Quoique mettant en jeu les mêmes principes fondamentaux décrits ci-après pour les applications cohérentes, ces luminophores et leurs applications particulières ne seront pas décrits ici, et nous renvoyons le lecteur à une revue récente de ce domaine [2].

On montre ici d’abord la spécificité des terres rares parmi tous les autres atomes du tableau de Mendeleïev. Cette spécificité est liée à l’existence de la couche électronique 4f incomplète qui les caractérise, ce qui permet à leurs ions, généralement trivalents, d’avoir un comportement particulier quasi atomique même lorsqu’ils sont insérés dans une matrice solide soit comme dopants soit comme constituants. On décrit ensuite l’origine des niveaux d’énergie de ces ions trivalents dans une matrice solide comme un cristal ou un verre. Puis l’origine des transitions entre ces niveaux est expliquée. Ce sont ces transitions qui vont commander les propriétés optiques des ions terres rares. On montre en particulier que ces propriétés sont plus liées aux transitions non radiatives que radiatives car les premières sont très sensibles à l’environnement de l’ion terres rares alors que les secondes le sont beaucoup moins. Les interactions ions-ions peuvent jouer un rôle important dans les propriétés optiques liées aux transferts d’énergie. Les différentes matrices qui peuvent recevoir des ions de terres rares sont décrites. Enfin, les applications de ces ions aux lasers et à l’amplification optique sont présentées.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e1980


Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

3. Transitions optiques entre niveaux des terres rares

3.1 Transitions radiatives

Les transitions entre les niveaux décrits ci-avant peuvent être soit radiatives, c’est-à-dire avec émission de photons, soit non radiatives, c’est-à-dire sans émission de photons mais avec émission de phonons ou de vibrations localisées, soit encore de type vibronique avec émission partielle de photons et de phonons. Les émissions radiatives sont de type dipolaire électrique ou dipolaire magnétique.

Les transitions radiatives sont habituellement caractérisées par leur « force d’oscillateur », qui sont des nombres purs < 1 caractérisant l’intensité d’une transition. Les forces d’oscillateurs sont définies dans le vide par :

avec :

m (kg)
 : 
masse de l’électron
ω (s–1)
 : 
pulsation de la transition
e (C)
 : 
charge de l’électron
ε0 (C2 · N–1 · m–2)
 : 
permittivité du vide
Mij (m4 · N–1)
 : 
élément de matrice de la transition
(J · s)
 : 
constante de Planck réduite (divisée par 2π)

Les fij , dont les valeurs typiques pour les terres rares sont de quelques 10–6, sont reliées aux probabilités d’émission spontanée Aij en s–1, et d’émission induite Bij (proportionnelle à ), pour la transition considérée dans un solide d’indice de réfraction n, par :

...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Transitions optiques entre niveaux des terres rares
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - AUZEL (F.) -   Coherent emission in rare-earth materials (Émission cohérente dans les matériaux terres rares).  -  Hand-book on the Physics and Chemistry of Rare-Earths, vol. 22, p. 507-606, 7 tab., 54 fig., bibl. (270 réf.), edit. by K.A. Gschneider and L. Eyring, 1996, Elsevier Science.

  • (2) - BLASSE (G.) et GRABMEIER (B.C.) -   Luminescent Materials (Les matériaux luminescents),  -  1994 Spinger.

  • (3) - DIEKE (G.H.) -   Spectra and energy levels of rare-earth ions in crystals (Les spectres et les niveaux d'énergie des ions de terres rares dans les cristaux)  -  , 401 p., 1968, Interscience Publishers.

  • (4) - BETHE (H.)  -   Termaufspaltung in Kristallen. (Levée de dégénérescence des termes dans les cristaux).  -  Ann. Physik., 3, 1929, p. 133-208.

  • (5) - AUZEL (F.) -   L'auto-extinction de Nd3+ : son mécanisme fondamental est un critère prédictif simple pour les matériaux minilaser.  -  Mat. Res. Bull. vol. 14, 1979, p. 223-231, Pergamon Press

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS