Présentation

Article

1 - APPORT DES TÉLÉCOMMUNICATIONS OPTIQUES NUMÉRIQUES

2 - SOURCES OPTIQUES MODULÉES

3 - PHOTODÉTECTEURS

4 - MULTIPLEXEURS/ DÉMULTIPLEXEURS OPTIQUES

5 - AMPLIFICATEURS OPTIQUES

6 - FIBRE OPTIQUE

| Réf : E3330 v1

Amplificateurs optiques
Optoélectronique hyperfréquence - Composants

Auteur(s) : Béatrice CABON, Jean CHAZELAS, Daniel DOLFI

Date de publication : 10 nov. 2003

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

Auteur(s)

  • Béatrice CABON : Professeur à l’École nationale supérieure d’électronique et de radioélectricité de Grenoble (ENSERG) - Responsable du groupe RF, Hyperfréquences et Optomicroondes à l’Institut de microélectronique, électromagnétisme et photonique (IMEP)

  • Jean CHAZELAS : Directeur du Département technologies avancées, - Thales Airborne Systems

  • Daniel DOLFI : Responsable du Laboratoire Identification et traitement optique du signal - Thales Research & Technology

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Le domaine de l’optoélectronique hyperfréquence est basé sur les composants optoélectroniques passifs et les composants optiques passifs ou passifs commandables.

La spécificité des composants optoélectroniques actifs pour la transmission ou le traitement des signaux hyperfréquences réside dans la fusion des deux technologies, optoélectronique et hyperfréquence, qui se caractérise par une adaptation des champs optique et hyperfréquence dans la propagation des signaux.

Autrement dit, les spécifications de bande passante, de linéarité, de dynamique des signaux hyperfréquences à traiter serviront de base à la conception des composants optoélectroniques de transduction ou convertisseurs électro- optiques (E/ O) et optoélectriques (O/ E).

Cet article sera focalisé sur les principaux types de composants entrant dans la conception de transmission en modulation d’amplitude de signaux analogiques hyperfréquences : convertisseurs E/O et O/ E, modulateurs optiques et amplificateurs.

Il sera complété par un état des principaux composants passifs permettant d’étendre les performances des liaisons optiques, le multiplexage fréquentiel pour les transmissions multiporteuses par exemple.

Enfin, les axes de développement en cours des composants actifs et passifs seront présentés dans un dernier article.

Les performances comparées des principaux composants optoélectroniques hyperfréquences, ainsi qu’une liste des principaux fournisseurs feront l’objet d’un document comparatif spécifique.

Nota :

Le présent article introduit donc une série consacrée à l’optoélectronique hyperfréquence :

Nota :

Le lecteur trouvera dans ce dernier fascicule Optoélectronique hyperfréquence[E 3 333] les noms et adresses Internet des principaux fournisseurs (liste non exhaustive).

Enfin, le lecteur consultera utilement les articles suivants, dans ce traité :

  • Interconnexions optiques  ;

  • Connectique optique  ;

  • Sources laser .

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e3330


Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

5. Amplificateurs optiques

La fonction d’un amplificateur optique est de générer du gain directement en optique, c’est-à-dire sans conversion du signal optique en signal électrique puis conversion du signal électrique amplifié en signal optique. Ce type d’amplificateur est généralement indépendant du signal électrique (analogique, numérique, fréquence, débit, ...) qui module la porteuse optique.

Il existe principalement trois types d’amplificateurs optiques :

  • les amplificateurs à fibre dopée en terre rare ;

  • les amplificateurs à fibre utilisant l’effet Raman ;

  • les amplificateurs optiques à semi-conducteur.

Leurs principes de fonctionnement ainsi que leurs principales caractéristiques sont présentés ci-après (cf. § 5.1, § 5.2, § 5.3).

Il faut noter que, pour le marché des télécommunications, la bande passante des amplificateurs optiques (disponibles et efficaces) a une influence majeure sur la gamme de longueurs d’ondes de fonctionnement des composants optiques (tant actifs que passifs) qui sont développés.

5.1 Amplificateurs à fibre dopée erbium

La bande passante optique des amplificateurs à fibre dopée terre rare est déterminée par la nature de la terre rare utilisée. Les amplificateurs les plus courants sont dopés à l’erbium et fonctionnent dans la gamme de longueurs d’onde de 1 550 nm.

HAUT DE PAGE

5.1.1 Principe

Le milieu à gain est constitué par la longueur de fibre dopée. Les caractéristiques de gain sont déterminées par les niveaux d’énergie de l’erbium. En l’absence de « pompage », les ions erbium sont dans l’état...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Amplificateurs optiques
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - WANG (J.S.) et al -   11 GHz bandwidth optical integrated recievers using GaAs MESFET and MSM technology.  -  IEEE Photonics Technologie Letters, vol. 5, no 3, p. 316-318 (1993).

  • (2) - HARARI (J.), VILCOT (J.P.), DECOSTER (D.) -   Metal Semiconductor Metal Photodetectors.  -  Wiley Encyclopedia of Electrical and Electronics Engineering, vol. 12, p. 561-577 (1999).

  • (3) - BÖTTCHER (E.H.), DRÖGE (E.), BIMBERG (D.), UMBACH (A.), ENGEL (H.) -   Ultra-wide- band (> 40 GHz) submicron InGaAs Metal- Semiconductor-Metal photodetector.  -  IEEE Photon. Tech. Lett., vol. 8, no 9, p. 1226-1228, sept. 1996.

  • (4) - VAN ZEGHBROECK (B.J.) -   105-GHz bandwidth Metal - Semiconductor - Metal photodiode.  -  IEEE Electron Device Letters, vol. 9, no 19, p. 527-529 (1988).

  • (5) - DROGE (E.), BOTTCHER (E.H.), STEINGRUBER (R.) -   70 GHz InGaAs metal-semiconductor - metal photodetectors for polarisation- insensitive operation.  -  Electronics letters, vol. 34, p. 1421-1422 (1998).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS