Présentation
EnglishAuteur(s)
-
Michel ROUSTAN : Ingénieur INSA (Institut national des sciences appliquées de Toulouse) - Professeur de génie chimique − INSA Toulouse
-
Jean-Claude PHARAMOND : Ingénieur INSA - Dosapro Milton Roy
-
Alain LINE : Ingénieur INPT (Institut national polytechnique de Toulouse) - Professeur de mécanique des fluides − INSA Toulouse
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Les techniques d’agitation, qui ont longtemps été considérées comme un art, s’appuient maintenant sur des considérations tant théoriques qu’expérimentales, qui permettent une approche scientifique des problèmes posés. Des progrès énormes ont en effet pu être réalisés grâce, d’une part, à l’accumulation de données sur le fonctionnement d’unités industrielles et, d’autre part, à l’effort de recherche important accompli par quelques sociétés et laboratoires universitaires spécialisés dans le domaine de l’agitation et du mélange.
D’une façon très générale, la détermination d’une unité d’agitation consiste soit à sélectionner l’appareil adapté à un nouveau procédé, soit à extrapoler (ou interpoler) les résultats obtenus avec un appareil donné dans le cadre d’une fabrication existante.
Les potentialités des nouveaux moyens expérimentaux et numériques permettent de développer une approche locale qui complète l’approche globale classique du fonctionnement des cuves agitées.
L’analyse locale du fonctionnement d’une cuve agitée (figure A) donne accès aux distributions spatiale et temporelle de la vitesse et de la turbulence. Cette information peut aider à comprendre et à contrôler le mélange dans la cuve agitée et peut conduire à optimiser son fonctionnement dans différentes conditions.
Dans tous les cas, une bonne connaissance du procédé est indispensable pour permettre le choix le plus favorable à l’accomplissement de ce procédé, notamment sur le plan économique.
VERSIONS
- Version courante de juil. 2023 par Michel ROUSTAN, Alain LINÉ, Jean-Claude PHARAMOND
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Extrapolation du pilote à l’échelle industrielle
7.1 Principe de l’extrapolation
Le but de l’extrapolation est de permettre de reproduire à l’échelle industrielle les résultats obtenus à l’échelle pilote ou laboratoire. Il s’agit, à partir de résultats obtenus à l’échelle du 1/10 de m3, de dimensionner un système d’agitation à l’échelle de plusieurs m3, voire d’une centaine de m3.
L’extrapolation est fondée sur le principe de similitude selon lequel les rapports d’un ou plusieurs paramètres sont les mêmes aux deux échelles. Dans le domaine de l’agitation, les paramètres géométriques et opératoires sont nombreux 3. On peut considérer cinq similitudes :
-
similitude géométrique : les rapports des dimensions géométriques sont les mêmes aux deux échelles (exemple : d / D, w /d, etc.) ;
-
similitude dynamique : les rapports des forces sont identiques (exemple : Re = force d’inertie / force de viscosité, Fr = force d’inertie / force de pesanteur, etc.) ;
-
similitude cinématique : les rapports des vitesses en des points homologues sont identiques ;
-
similitude chimique : les concentrations sont les mêmes en des points homologues ;
-
similitude thermique : les températures sont les mêmes en des points homologues.
Le tableau 9 montre l’influence d’un changement d’échelle de facteur F, en conservant la similitude géométrique, sur les grandeurs caractéristiques d’un système d’agitation. Selon la grandeur conservée invariante d’une échelle à l’autre, le principe de similitude n’est pas respecté pour les autres grandeurs caractéristiques.
si la vitesse périphérique V p = π Nd est...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Extrapolation du pilote à l’échelle industrielle
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive