Présentation
RÉSUMÉ
Les accéléromètres ont vu le développement de leurs applications s’amplifier graduellement. Présents de nos jours dans notre quotidien, ils sont désormais produits en grande quantité. Parmi ces applications “grand public”, sont cités les airbags de voiture (ou coussin gonflable de sécurité), les systèmes d’aide à la tenue de route (tels que ABS, ESP), ou encore les machines à laver (équilibrage du linge dans le tambour). Dans cet article, des définitions et quelques éléments de physique sont tout d’abord proposés, puis les différents principes de mesure expliqués. Pour terminer, les gyromètres (à structure vibrante et acoustique) sont traités plus spécifiquement.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Alain DEVAL : Ingénieur Civil de l’Aéronautique - Directeur Technique Adjoint de la SAGEM
-
Yvon AMAND : Ingénieur de Recherche, SAGEM
INTRODUCTION
Dans cet article, nous nous bornerons au domaine d’emploi courant des accéléromètres en mécanique rationnelle.
Après des rappels théoriques concernant les définitions et les unités (§ 1, 2 et 3), nous aborderons les mesures 4 et les différents types d’accéléromètres.
Les accéléromètres sont utilisés pour des applications ou des mesures très diverses ; citons, à titre d’exemples :
-
mesure des accélérations à bord de véhicules automobiles (suspensions actives et détecteurs de chocs) ;
-
navigation et guidage par inertie concernant principalement les véhicules (avions, hélicoptères, bateaux, sous-marins, fusées et missiles), dans le domaine aérospatial, la mécanique des satellites et les sondes spatiales ;
-
contrôle des accélérations dans les essais de chocs ou de vibrations d’équipements et structures ;
-
contrôles mécaniques d’ensembles industriels ;
-
essais de simulation au sol ;
-
mesures géophysiques, géodésiques et aéronomiques.
Il existe une grande diversité de types d’accéléromètres et l’on peut envisager différents classements. Une première liste 4.2.1 comprend des capteurs de conception simple et non asservis. Cette classification est basée sur la nature du phénomène de détection. La liste n’est pas exhaustive, mais elle permet de passer en revue la plupart des phénomènes physiques qui sont utilisés dans la réalisation d’un accéléromètre.
Une seconde classification (§ 4.2.2 et 6) concerne les accéléromètres généralement de haut de gamme à déplacements asservis.
On trouvera ensuite (§ 4.2.3 et 7) les accéléromètres à poutres vibrantes et à ondes de surface. Bien que de type en boucle ouverte, certains de ces capteurs rivalisent en précision avec les appareils asservis.
Une classification supplémentaire concerne les accéléromètres répartis suivant l’emploi projeté 8.
Un dernier classement réunit les accéléromètres plus complexes et les capteurs microniques et intégrés 9.
VERSIONS
- Version archivée 1 de oct. 1981 par René CLARET, Alain DEVAL
- Version courante de juin 2008 par Stéphane DURAND
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mesures mécaniques et dimensionnelles
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
9. Accéléromètres complexes et capteurs intégrés
9.1 Accéléromètre intégrateur
Cet appareil fournit la valeur de l’accélération et en réalise aussitôt l’intégration. Son application concerne principalement les besoins de la navigation dite par inertie 8.2 où l’accélération n’est qu’une étape donnant la vitesse qui, elle-même intégrée, fournit la valeur du chemin parcouru. Cependant, l’intégration est ici réalisée par le jeu même de l’agencement mécanique de l’appareil et non par l’emploi d’un dispositif intégrateur indépendant.
Le modèle le plus répandu de ce type de matériels et ayant donné lieu à diverses variantes est celui utilisant un gyroscope balourdé (figure 16).
Dans ces dispositifs, l’agencement général est celui du gyroscope dit à un degré de liberté. Sa réalisation habituelle est celle du gyroscope flottant.
Dans un cylindre flotteur pivotant autour de son axe XX ′ se trouve une toupie dont l’axe YY ′ est perpendiculaire à XX ′.
Une masse de balourd m affecte l’ensemble du flotteur créant un couple autour de XX ′, sous l’effet d’une accélération γ. Cela peut être obtenu en décentrant la masse de la toupie, son centre de gravité G étant distant de l’axe XX ′ de la quantité .
Sur la figure 16, l’axe ZZ ′ de sensibilité aux accélérations est vertical. Une accélération γ soumet le flotteur à un couple qui tend à le faire précessionner (vitesse angulaire ω ) autour de l’axe ZZ ′. Les pivots suivant XX ′ interdisant cette liberté, ce couple agit sur le flotteur comme si la toupie ne tournait pas et le met en rotation autour...
Cet article fait partie de l’offre
Mesures mécaniques et dimensionnelles
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Accéléromètres complexes et capteurs intégrés
Cet article fait partie de l’offre
Mesures mécaniques et dimensionnelles
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive