Présentation

Article

1 - GÉNÉRALITÉS

2 - APPAREILS DE MESURE

3 - SHUNTS ET TRANSFORMATEURS DE COURANT

4 - TRAÇABILITÉ DES MESURES DE COURANT

5 - CONCLUSION

| Réf : R1015 v2

Traçabilité des mesures de courant
Mesures d’intensité de courant électrique

Auteur(s) : André POLETAEFF

Date de publication : 10 déc. 2011

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Le choix d’un appareil destiné à la mesure de courant électrique est déterminé par le type de mesure effectuée et par l’usage de l’information obtenue : mesures en laboratoire, ponctuelles ou répétitives, forts courants ou faibles intensités, régime continu, à basse fréquence ou à fréquence plus élevée. Dans le cas de courant alternatifs, la nature du paramètre à mesurer (valeur efficace, valeur moyenne après redressement...) est également déterminante. Les principes de fonctionnement ainsi que les spécifications sont présentés pour chaque type d’ampèremètres existants, les numériques inclus. L’utilisation des shunts et des transformateurs de courant pour la mesure de courants d’intensité élevée implique certaines précautions, pour garantir la qualité des mesures mais aussi pour assurer la sécurité de l’opérateur et des matériels. Pour finir, un point est fait sur la traçabilité de ces types d’appareil, devenue un aspect incontournable pour la plupart des entreprises.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • André POLETAEFF : Ingénieur diplômé du Conservatoire national des arts et métiers (CNAM) - Ingénieur chargé d’études et de recherches en métrologie basses fréquences au Laboratoire national de métrologie et d’essais (LNE)

INTRODUCTION

Une grande variété d’appareils destinés à la mesure d’intensité de courant électrique sont proposés sur le marché. Diverses méthodes de mesure peuvent par ailleurs être mises en œuvre à cette fin. Le choix du matériel à utiliser ainsi que celui de la méthode la plus appropriée sont déterminés par le type de mesure qu’on désire effectuer et par l’usage qu’on souhaite faire de l’information ainsi obtenue. En effet, l’approche est différente selon qu’il s’agit de tests de fonctionnement ou de contrôle de conformité à un cahier des charges ou à une norme, de mesures en laboratoire, de mesures ponctuelles ou répétitives effectuées au moyen d’un banc automatisé, de mesures de forts courants ou de faibles intensités de courant, réalisées en régime continu, à basse fréquence ou à fréquence plus élevée.

Dans le cas de courant alternatifs, la nature du paramètre à mesurer (valeur efficace, valeur moyenne après redressement…) est aussi un élément déterminant dans le choix de l’appareil notamment lorsqu’il s’agit de signaux affectés de distorsion. La problématique liée à la forme du signal fait l’objet du paragraphe 1.

Les principaux types d’ampèremètres existants sont présentés au paragraphe 2 avec, pour chacun, une description de leur principe de fonctionnement ainsi que leurs principales spécifications. Une large place est accordée aux appareils numériques qui, du fait des progrès incessants réalisés dans le domaine de l’électronique, ont envahi le marché au détriment des appareils analogiques. En effet, les performances des composants et des systèmes autour desquels ils sont construits, le large éventail des fonctions qu’ils réalisent, leur robustesse ainsi que leur prix de plus en plus attractif ont rendu leur emploi quasi universel. Certains d’entre eux offrent la possibilité d’échantillonner le signal, permettant une analyse mathématique de celui-ci et donnant ainsi accès à toutes ses caractéristiques.

Le paragraphe 3 est consacré aux shunts et aux transformateurs de courant souvent associés aux ampèremètres, indispensables pour la mesure de courants d’intensité élevée. Leur utilisation implique en effet de prendre certaines précautions, tant pour garantir la qualité des mesures que pour assurer la sécurité de l’opérateur et des matériels.

Enfin le fonctionnement de la plupart des entreprises est maintenant soumis à des systèmes d’assurance de la qualité, obligeant notamment celles dont l’activité nécessite l’emploi d’appareils de mesure à garantir leur traçabilité au Système international d’unités (SI). La traçabilité des appareils de mesure de courant fait l’objet du paragraphe 4. Le principe du raccordement des courants continus mis en œuvre au niveau des laboratoires nationaux de métrologie y est succinctement décrit. Une large place est ensuite consacrée à la transposition thermique qui constitue actuellement le moyen le plus précis pour le raccordement des grandeurs alternatives (courant et tension) aux grandeurs continues correspondantes. La description des principes de deux méthodes classiques d’étalonnage d’ampèremètres, l’une basée sur la transposition thermique et l’autre faisant appel à une résistance et à un voltmètre étalons, complète cet article.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-r1015


Cet article fait partie de l’offre

Mesures et tests électroniques

(78 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

4. Traçabilité des mesures de courant

4.1 Traçabilité au Système international d’unités (SI)

HAUT DE PAGE

4.1.1 Traçabilité en courant continu

À l’heure actuelle, l’effet Josephson permet de disposer de tensions continues entre quelques centaines de mV et une dizaine de V traçables au SI avec une incertitude de l’ordre de quelques 10−7. L’effet Hall quantique permet, quant à lui, de raccorder des résistances au SI, elles aussi avec une incertitude de quelques 10−7. Par la mise en œuvre de la loi d’Ohm, on peut ainsi connaître l’intensité de courants électriques avec une incertitude du même ordre de grandeur. C’est de cette façon que les courants continus sont raccordés au SI dans les laboratoires nationaux de métrologie (LNM) qui se sont dotés de ces outils métrologiques modernes comme c’est le cas dans un certain nombre de pays européens et notamment en France. Une méthode de mesure permettant un tel raccordement est décrite au paragraphe 4.3 où la résistance étalon est directement raccordée à l’effet Hall quantique et le voltmètre étalon à l’effet Josephson.

HAUT DE PAGE

4.1.2 Traçabilité en courant alternatif

Le moyen le plus précis d’assurer la traçabilité des grandeurs alternatives (tension et courant) est actuellement la transposition thermique. Elle est mise en œuvre dans pratiquement tous les LNM et également dans nombre de services de métrologie au sein des entreprises.

HAUT DE PAGE

4.1.2.1 Principe de la transposition thermique

Dans un premier temps, la grandeur alternative dont on veut assurer la traçabilité est appliquée à l’entrée d’un convertisseur...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures et tests électroniques

(78 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Traçabilité des mesures de courant
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ESPEL (P.), POLETAEFF (A.), BOUNOUH (A.) -   Characterization of analog-to-digital converters of a commercial digital voltmeter in the 20 Hz to 400 Hz frequency range  -  Metrologia, vol. 46, pp. 578-584 (2009).

  • (2) - IHLENFIELD (K.W.G.) et al -   Characterization of a high resolution analog to digital converter with a Josephson AC source  -  IEEE Trans. Instr. Meas., vol 54, pp. 649-652 (2005).

  • (3) - INGLIS (D.B.) -   AC-DC Transfer Standards – Present Status and Future Directions  -  IEEE Trans. Instr. Meas., vol IM-34, n° 2, pp. 285-290 (1985).

  • (4) - INGLIS (D.B.) -   Standards for AC-DC Transfer  -  Metrologia, vol. 29, pp. 191-199 (1992).

  • (5) - JACOBS (P.), JADIN (V.) -   Mesures électriques  -  Dunod (1968).

  • (6) - KLONZ (M.) -   AC-DC Transfer Difference of the PTB Multijunction Thermal...

1 Sites Internet

AGILENT Manuel d’utilisation de programmation et de configuration du multimètre 3458A

http://www.agilent.fr

HAUT DE PAGE

2 Normes et standards

NF EN 60051-1 (Avril 1999), Appareils mesureurs électriques indicateurs analogiques à action directe et leurs accessoires. Partie 1 : Définitions et prescriptions générales communes à toutes les parties.

NF EN 60051-2 (Février 1990), Appareils mesureurs électriques indicateurs analogiques à action directe et leurs accessoires. Partie 2 : Prescriptions particulières pour les ampèremètres et les voltmètres.

NF EN 60051-7 (Février 1990), Appareils mesureurs électriques indicateurs analogiques à action directe et leurs accessoires. Partie 7 : Prescriptions particulières pour les appareils à fonctions multiples.

NF EN 60051-8 (Février...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures et tests électroniques

(78 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS