Présentation

Article

1 - UNIVERS DES NANOMÉDECINES

2 - DEVENIR DES NANOMÉDECINES APRÈS ADMINISTRATION INTRAVEINEUSE

3 - DEVENIR APRÈS ADMINISTRATION ORALE

4 - DEVENIR APRÈS ADMINISTRATION CUTANÉE

5 - DEVENIR APRÈS ADMINISTRATION PULMONAIRE

  • 5.1 - Rappels physiologiques du poumon
  • 5.2 - Devenir des nanomédecines dans le poumon
  • 5.3 - Principaux modèles d'évaluation des nanomédecines utilisées par voie pulmonaire
  • 5.4 - Applications de l'utilisation des nanomédecines administrées par voie pulmonaire

6 - CONCLUSION

| Réf : MED5050 v1

Devenir des nanomédecines après administration intraveineuse
Devenir des nanoparticules utilisées comme médicament dans l'organisme

Auteur(s) : Frédéric LAGARCE

Date de publication : 10 oct. 2014

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les nanotechnologies constituent une promesse de renouveau pour la formulation des médicaments car elles permettent, potentiellement, d’augmenter leur rapport bénéfice/risque. Une mise au point rationnelle des nanomédecines passe par la bonne connaissance de leur comportement in vivo. Cet article dresse un état des lieux des connaissances sur le devenir des nanomédicaments en fonction de leurs propriétés (taille, charge, nature chimique) mais aussi en fonction des structures physiologiques qu’ils rencontrent au cours de leur trajet dans l’organisme.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Fate of nanomedicine in the human body

Nanotechnologies are a big hope for the formulation of drugs, because they allow potentially a better gain/risk ratio. A good understanding of their in vivo behaviour is mandatory for a rational design of nanomedicines. This paper describes the fate of nanomedicines according to their physico-chemical properties (size, surface charge) but also in function of the physiological barriers they encounter along their journey into the body.

Auteur(s)

  • Frédéric LAGARCE : Professeur de biopharmacie - Faculté de pharmacie - Inserm, U 1066 MINT, LUNAM Université, Angers, France

INTRODUCTION

Les médicaments utilisés aujourd'hui en santé humaine comportent une activité pharmacologique principale, mais aussi des effets secondaires dits indésirables. Améliorer les performances du médicament en limitant ses potentiels effets toxiques revient à augmenter sa balance bénéfices/risques. Les nanotechnologies apportent des moyens d'augmenter la balance bénéfices/risques en changeant le devenir du médicament dans l'organisme. Ceci revêt un caractère très important dans le domaine des traitements anticancéreux, où l'on recherche un ciblage très fin sur les cellules tumorales et non sur les cellules saines. L'idée sous-tendue par cette stratégie thérapeutique consiste à associer la molécule active avec un vecteur qui possède des propriétés physico-chimiques (taille, charges électrostatiques de surface, hydrophilie, etc.) qui détermineront ses lieux de diffusion dans l'organisme et son élimination. Ainsi, le devenir de la molécule active, médicament, dans l'organisme, ne dépendra plus de ses propriétés chimiques propres mais de celles du vecteur. Ce concept est appelé vectorisation. Une vectorisation réussie consiste ainsi à améliorer le ciblage des molécules vers les tissus de l'organisme où l'on désire qu'elles soit actives tout en limitant leur diffusion vers les tissus pour lesquels elles pourrait être toxiques, ceci en allongeant sa durée de résidence dans les tissus d'intérêt pour prolonger l'effet pharmacologique et obtenir des médicaments plus efficaces. La mise au point d'un vecteur efficace et peu toxique repose sur la maîtrise des procédés de fabrication et de caractérisation, parfois difficiles à l'échelle nanométrique, mais aussi sur la connaissance des structures physiologiques, histologiques, biologiques et biochimiques des tissus de l'organisme. En effet, le devenir dans l'organisme du vecteur que l'on désire contrôler, pour maîtriser de fait l'action du médicament, dépendra de l'interaction entre le vecteur et le milieu vivant. Ainsi, en fonction de la voie d'administration du médicament, le vecteur sera en contact avec différents tissus et son trajet dans l'organisme pourra être différent. La discipline qui permet d'étudier le comportement d'un médicament en fonction des structures biologiques qu'il rencontre s'appelle la biopharmacie. Cet article a pour objectif de décrire les concepts particuliers de biopharmacie lorsqu'ils sont appliqués aux vecteurs de médicaments, appelés aussi nanomédecines. Une analyse du devenir des nanomédecines par voie d'administration sera proposée dans cet article afin d'éclairer le formulateur sur les structures cellulaires et tissulaires à prendre en compte pour un design rationnel et efficace des nanomédicaments.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

state of the art   |   pharmacokinetics   |   biopharmaceutics   |   nanomedicine

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-med5050


Cet article fait partie de l’offre

Médicaments et produits pharmaceutiques

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

2. Devenir des nanomédecines après administration intraveineuse

2.1 Pharmacocinétique des nanoparticules

Après administration sanguine, les nanoparticules vont circuler dans le torrent circulatoire. Pour atteindre les tissus, il faudra que ces transporteurs passent dans les artères puis les artérioles de plus petits diamètres. Ainsi, une dose de nanoparticules administrée dans une veine rejoindra le cœur par la veine cave puis passera obligatoirement dans les poumons pour revenir au cœur par la veine pulmonaire et rejoindre la circulation artérielle par l'artère aorte (figure 2). Le passage par les poumons n'est pas un problème pour ces objets de petite taille, il l'est pour des particules de plus de 5 micromètres de diamètre car le risque d'embolie des petits vaisseaux pulmonaires est alors à prendre en compte. Après passage dans le réseau artériel, si les nanoparticules n'ont pas été captées par les tissus, elles vont être piégées dans les macrophages du système réticulo-endothélial, en particulier dans le foie et dans la rate. À ce titre, les cellules de Küpfer du foie, qui sont des macrophages particuliers, sont la principale source de captation des nanoparticules, du fait de leur grand nombre (25 % des cellules hépatiques, 90 % des macrophages de l'organisme) et de leur emplacement en bordure des sinus hépatiques. La rate constitue aussi un moyen très efficace de séquestrer les nanoparticules et donc de limiter leur action thérapeutique. Les débits sanguins artériels de la rate et du foie sont respectivement de 77 ml/min et de 300 ml/min . Ainsi, plus les nanoparticules évitent la rétention dans le foie, plus ils vont pouvoir atteindre la rate. Les nanoparticules de taille supérieure à 200 nm qui sont rigides ou qui ont des formes non sphériques ont plus de chance d'être captées par la rate. Cette rétention splénique, en plus de limiter la biodisponibilité des principes actifs encapsulés dans les nanoparticules, favorise les réactions immunitaires à l'origine du phénomène d'élimination accélérée des nanoparticules lorsqu'une seconde dose est administrée. Ce phénomène a été observé avec des nanoparticules polymères, des liposomes ou des complexes lipidiques ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Médicaments et produits pharmaceutiques

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Devenir des nanomédecines après administration intraveineuse
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - SHEGOKAR (R.), SINGH (K.K.), MULLER (R.H.) -   Production & stability of stavudine solid lipid nanoparticles – from lab to industrial scale  -  Int J Pharm, 416, p. 461-470 (2011).

  • (2) - HUYNH (N.T.), PASSIRANI (C.), SAULNIER (P.), BENOIT (J.P.) -   Lipid nanocapsules : a new platform for nanomedicine  -  Int J Pharm, 379, p. 201-209 (2009).

  • (3) - HUREAUX (J.), LAGARCE (F.), GAGNADOUX (F.), CLAVREUL (A.), BENOIT (J.P.), URBAN (T.) -   The adaptation of lipid nanocapsule formulations for blood administration in animals  -  Int J Pharm, 379, p. 266-269 (2009).

  • (4) - THOMAS (O.), LAGARCE (F.) -   Lipid nanocapsules : a nanocarrier suitable for scale-up process  -  Journal of drug delivery science and technology, 23, p. 555-559 (2013).

  • (5) - XIE (J.), LEE (S.), CHEN (X.) -   Nanoparticle-based theranostic agents  -  Adv Drug Deliv Rev, 62, p. 1064-1079 (2010).

  • (6)...

1 Sites Internet

European technology platform on nanomedicine : ETP – Nanomedicine. http://www.etp-nanomedicine.eu/public

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Médicaments et produits pharmaceutiques

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS