Présentation
RÉSUMÉ
Les moteurs automobiles modernes ont considérablement évolué au rythme imposé par la limitation des émissions polluantes et par la baisse de la consommation de carburant. Aussi, le système d'admission d'air s'est énormément complexifié, devenant un sous-ensemble regroupant des fonctions très diverses imposant l'utilisation d'un ou plusieurs échangeurs thermiques, d'actionneurs, de capteurs et de pièces de formes diverses qu'il faut savoir modéliser et dimensionner. Cet article propose un tour d'horizon des technologies actuelles et des prochaines évolutions.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Laurent ODILLARD : Ingénieur Avance de phase Thermique moteur Valeo Systèmes thermiques
INTRODUCTION
Lors de l'introduction des refroidisseurs d'air de suralimentation dans les années 1990, l'échangeur était dimensionné comme un simple composant défini par sa puissance thermique et sa perte de charge, fonction du débit d'air d'admission et de la vitesse de l'air en face avant du véhicule.
Les dernières améliorations des moteurs en matière de réduction de la consommation et de leur conformité avec des normes antipollution de plus en plus exigeantes ont poussé à une augmentation du besoin de refroidissement des gaz de suralimentation. L'introduction du cycle harmonisé WLTC (Worldwide harmonized Light vehicles Test Cycle) accentuera cette tendance par la nécessité d'une augmentation du taux de gaz recyclés (EGR – Exhaust Gas Recirculation) sur des points moteur plus chargés.
La tendance au « downsizing » et au « downspeeding » des moteurs contraint clairement les motoristes à une meilleure intégration de la fonction de refroidissement des gaz en aval du compresseur pour laquelle de nouvelles exigences et fonctionnalités se font sentir, telles que :
-
une importante diminution de la perte de charge afin d'augmenter la pression en amont des soupapes d'admission : cela équivaut à une augmentation de la pression de suralimentation ;
-
une réduction du volume d'air en aval du compresseur afin de réduire les temps de réponse (« time to torque ») ;
-
une stabilité de la température en aval de l'échangeur : elle doit être moins dépendante des conditions de roulage (vitesse véhicule) et de la stratégie de dépollution (taux EGR haute et basse pression) ;
-
la possibilité de contrôler la température en aval de l'échangeur en fonction des points de fonctionnement moteur, de la stratégie de dépollution (problématique de condensation en EGR basse pression, régénération du filtre à particules) ou de vie du moteur (amélioration des démarrages à froid, réduction du « light off » catalyseur) ;
-
une augmentation des performances thermiques et la limitation des échauffements parasites en aval de l'échangeur ;
-
l'ajout de fonctionnalités actives (boîtier papillon, doseur d'air, vanne EGR, volet de swirl, désactivation de cylindre, etc.) ;
-
une compatibilité avec l'ensemble des plateformes véhicule du ou des constructeurs.
Ce besoin d'intégration de la fonction refroidissement des gaz de suralimentation pousse à étudier l'ensemble des composants de la sortie compresseur aux soupapes d'admission comme un système multicomposant appelé « module d'admission » ou « ligne d'air de suralimentation ».
Le présent article traitera de la modélisation des composants de la ligne d'air d'admission, des différentes architectures connues et présentera les principales voies d'amélioration des architectures actuelles.
VERSIONS
- Version courante de juin 2023 par Laurent ODILLARD
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Réduction des émissions polluantes
4.1 Recyclage des gaz d'échappement
-
Rappel historique
L'introduction des normes européennes dans les années 1990 a obligé les constructeurs à limiter la quantité d'oxyde d'azote émise sur un cycle d'homologation. Pour rappel, les oxydes d'azote (NOx) sont générés (§ 2.2) :
-
lorsque la température de combustion est importante ;
-
lorsque la combustion a lieu dans un environnement en excès d'air.
Une des méthodes communément utilisées par les constructeurs consiste à diluer l'air frais d'admission avec des gaz d'échappement afin de réduire la température lors de la combustion (EGR), les gaz d'échappement ne participant pas à l'oxydation du carburant. Ces systèmes ont été successivement améliorés, notamment par :
-
un contrôle du taux d'EGR plus précis en passant d'un pilotage tout ou rien pneumatique à une commande proportionnelle par moteur couple ou courant continu (actionneur avec capteur de recopie pour le contrôle et la régulation) ;
-
l'introduction d'un échangeur afin de réduire la température des gaz recyclés et aussi améliorer l'efficacité du système (meilleur compromis NOx – particule à iso-taux d'EGR), voir figure 20 ;
-
l'utilisation d'un by-pass d'échangeur lors de la phase de démarrage, afin de réduire les émissions de HC et de CO (norme Euro 4).
Ces composants sont donc en interaction avec la conception de la ligne d'air de suralimentation (dispositif de mélange) et le niveau de performance thermique de l'ensemble (température de mélange air + EGR).
-
Principes de recirculation des gaz d'échappement
Nous distinguons deux...
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Réduction des émissions polluantes
BIBLIOGRAPHIE
-
(1) - GRISSTEDE (I.), FRANOSCHEK (S.), SEYLER (M.), HOYER (R.), NOACK (H.), BASSO (S.), MÜLLER (W.), HANAU (W.) - Robust NOx after treatment systems for diesel pass-cars beyond EU6. - Aachen Colloquium Automobile and Engine Technology (2012).
-
(2) - ROSE (D.), HEIBELS (A.K.), GEORGE (S.), WARKINS (J.), GOLOMB (N.), WARREN (C.) - A new generation high porosity DuraTrap® at for integration of deNOx functionalities. - Aachen Colloquium Automobile and Engine Technology (2012)
-
(3) - KÖNIGSTEDT (J.), ASSMANN (M.), BRINKMANN (C.), EISER (A.), GROB (A.), JABLONSKI (J.), MÜLLER (R.) - The new 4.0-l V8 TFSI engines from Audi. - Internationales Wiener Motorensymposium (2012).
-
(4) - NEUSSER (H.-J.), KAHRSTEDT (J.), JELDEN (H.), ENGLER (H.-J.), DORENKAMP (R.), JAUNS-SEYFRIED (S.), KRAUSE (A.) - Volkswagen's new modular TDI® generation. - Internationales Wiener Motorensymposium (2012).
-
(5) - KAHRSTEDT (J.), DORENKAMP (R.), KUIKEN (S.), GREINER (M.), KÜHNE (I.), NIGRO (G.), DÜSTERDIEK (T.), VELDTEN (B.), THÖM (N.) - The new 2.0 l TDI® to fulfill...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive