Présentation
RÉSUMÉ
Les moteurs automobiles modernes ont considérablement évolué au rythme imposé par la limitation des émissions polluantes et par la baisse de la consommation de carburant. Aussi, le système d'admission d'air s'est énormément complexifié, devenant un sous-ensemble regroupant des fonctions très diverses imposant l'utilisation d'un ou plusieurs échangeurs thermiques, d'actionneurs, de capteurs et de pièces de formes diverses qu'il faut savoir modéliser et dimensionner. Cet article propose un tour d'horizon des technologies actuelles et des prochaines évolutions.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Laurent ODILLARD : Ingénieur Avance de phase Thermique moteur Valeo Systèmes thermiques
INTRODUCTION
Lors de l'introduction des refroidisseurs d'air de suralimentation dans les années 1990, l'échangeur était dimensionné comme un simple composant défini par sa puissance thermique et sa perte de charge, fonction du débit d'air d'admission et de la vitesse de l'air en face avant du véhicule.
Les dernières améliorations des moteurs en matière de réduction de la consommation et de leur conformité avec des normes antipollution de plus en plus exigeantes ont poussé à une augmentation du besoin de refroidissement des gaz de suralimentation. L'introduction du cycle harmonisé WLTC (Worldwide harmonized Light vehicles Test Cycle) accentuera cette tendance par la nécessité d'une augmentation du taux de gaz recyclés (EGR – Exhaust Gas Recirculation) sur des points moteur plus chargés.
La tendance au « downsizing » et au « downspeeding » des moteurs contraint clairement les motoristes à une meilleure intégration de la fonction de refroidissement des gaz en aval du compresseur pour laquelle de nouvelles exigences et fonctionnalités se font sentir, telles que :
-
une importante diminution de la perte de charge afin d'augmenter la pression en amont des soupapes d'admission : cela équivaut à une augmentation de la pression de suralimentation ;
-
une réduction du volume d'air en aval du compresseur afin de réduire les temps de réponse (« time to torque ») ;
-
une stabilité de la température en aval de l'échangeur : elle doit être moins dépendante des conditions de roulage (vitesse véhicule) et de la stratégie de dépollution (taux EGR haute et basse pression) ;
-
la possibilité de contrôler la température en aval de l'échangeur en fonction des points de fonctionnement moteur, de la stratégie de dépollution (problématique de condensation en EGR basse pression, régénération du filtre à particules) ou de vie du moteur (amélioration des démarrages à froid, réduction du « light off » catalyseur) ;
-
une augmentation des performances thermiques et la limitation des échauffements parasites en aval de l'échangeur ;
-
l'ajout de fonctionnalités actives (boîtier papillon, doseur d'air, vanne EGR, volet de swirl, désactivation de cylindre, etc.) ;
-
une compatibilité avec l'ensemble des plateformes véhicule du ou des constructeurs.
Ce besoin d'intégration de la fonction refroidissement des gaz de suralimentation pousse à étudier l'ensemble des composants de la sortie compresseur aux soupapes d'admission comme un système multicomposant appelé « module d'admission » ou « ligne d'air de suralimentation ».
Le présent article traitera de la modélisation des composants de la ligne d'air d'admission, des différentes architectures connues et présentera les principales voies d'amélioration des architectures actuelles.
VERSIONS
- Version courante de juin 2023 par Laurent ODILLARD
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Impact de la température en aval de l'échangeur de suralimentation
La réduction de la température d'air de suralimentation permet :
-
d'augmenter le débit massique d'air à isodébit volumique, et donc la puissance moteur (ce point ne sera pas détaillé, mais le lecteur pourra se reporter aux équations de base des moteurs à combustion interne) ;
-
de diminuer les contraintes thermiques sur les composants du moteur (l'usage de composants en matière plastique sera ainsi rendu possible).
Il est intéressant de remarquer que la température en aval de l'échangeur a un impact fort sur la température dans le cylindre juste avant le démarrage de la combustion (fin de compression) :
avec :
- Tcyl1 :
- (K) température dans le cylindre en fin de compression,
- T2 :
- (K) température des gaz dans le collecteur d'admission,
- e :
- rapport volumétrique du moteur.
De manière plus spécifique, la température des gaz en aval de l'échangeur aura une influence sur le déroulement de la combustion du carburant dans le cylindre.
2.1 Moteur à allumage commandé
Dans le cas des moteurs à allumage commandé, le facteur limitant le bon déroulement de la combustion est le « cliquetis ». Celui-ci a lieu durant la phase de combustion, lorsque la pression et la température dans la charge qui n'a pas encore brûlé sont telles que le reste du carburant présent dans la chambre s'oxyde très rapidement, de manière détonante, engendrant des variations de pression extrêmement violentes. Cela entraîne des dommages mécaniques et thermiques sur le moteur (voir [BM 2 540]).
En...
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Impact de la température en aval de l'échangeur de suralimentation
BIBLIOGRAPHIE
-
(1) - GRISSTEDE (I.), FRANOSCHEK (S.), SEYLER (M.), HOYER (R.), NOACK (H.), BASSO (S.), MÜLLER (W.), HANAU (W.) - Robust NOx after treatment systems for diesel pass-cars beyond EU6. - Aachen Colloquium Automobile and Engine Technology (2012).
-
(2) - ROSE (D.), HEIBELS (A.K.), GEORGE (S.), WARKINS (J.), GOLOMB (N.), WARREN (C.) - A new generation high porosity DuraTrap® at for integration of deNOx functionalities. - Aachen Colloquium Automobile and Engine Technology (2012)
-
(3) - KÖNIGSTEDT (J.), ASSMANN (M.), BRINKMANN (C.), EISER (A.), GROB (A.), JABLONSKI (J.), MÜLLER (R.) - The new 4.0-l V8 TFSI engines from Audi. - Internationales Wiener Motorensymposium (2012).
-
(4) - NEUSSER (H.-J.), KAHRSTEDT (J.), JELDEN (H.), ENGLER (H.-J.), DORENKAMP (R.), JAUNS-SEYFRIED (S.), KRAUSE (A.) - Volkswagen's new modular TDI® generation. - Internationales Wiener Motorensymposium (2012).
-
(5) - KAHRSTEDT (J.), DORENKAMP (R.), KUIKEN (S.), GREINER (M.), KÜHNE (I.), NIGRO (G.), DÜSTERDIEK (T.), VELDTEN (B.), THÖM (N.) - The new 2.0 l TDI® to fulfill...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive