Présentation

Article

1 - PROBABILITÉS ET STATISTIQUES

  • 1.1 - Notion intuitive de probabilité
  • 1.2 - Statistiques

2 - PROBABILITÉS DES VARIABLES ALÉATOIRES DISCRÈTES

3 - DENSITÉ DE PROBABILITÉ DES VARIABLES ALÉATOIRES CONTINUES

4 - MOYENNES ET MOMENTS

5 - LOIS DE PROBABILITÉ

6 - PROBABILITÉS ASSOCIÉES À PLUSIEURS VARIABLES ALÉATOIRES

7 - CONCLUSION

| Réf : R210 v1

Probabilités des variables aléatoires discrètes
Processus aléatoires

Auteur(s) : Bernard DEMOULIN

Date de publication : 10 avr. 1990

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Bernard DEMOULIN : Docteur ès Sciences Physiques - Maître de conférences à l’Université des Sciences et Techniques de Lille Flandres‐Artois, Laboratoire de Radiopropagation et Électronique URA CNRS n 289

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Le contrôle de processus industriels et de certaines expériences scientifiques nécessite souvent l’acquisition et le traitement d’un volume important de résultats de mesures.

Si les phénomènes physiques contrôlés par les mesures sont déterministes, l’évolution des données est prévisible au moyen des lois mathématiques se résumant à des fonctions d’une ou de plusieurs variables.

Si les phénomènes sont, au contraire, gérés par des processus stochastiques, les données provenant de la mesure auront un caractère purement aléatoire. Toute tentative cherchant à déduire l’évolution prévisionnelle de ces résultats passera donc par une étude attentive de leurs propriétés statistiques. Ce problème est d’ailleurs bien mis en relief lors des sondages d’opinion où, à partir d’un nombre forcément limité de questions/réponses, on veut en déduire le comportement d’un macrosystème.

Les statistiques et les probabilités ont donc pour vocation de traiter des informations à caractère aléatoire et, surtout, d’en extrapoler le comportement. Les statistiques concernent plutôt les méthodes et techniques permettant de choisir l’information et de tester des modèles, alors que les probabilités constituent l’outil mathématique utilisé pour simuler le comportement physique d’un macrosystème.

Les probabilités apparaissent, dans leur aspect le plus concret, comme des valeurs numériques ou, plus souvent, des fonctions mathématiques précisant l’occurrence d’événements ou de données à caractère aléatoire que l’on préfère d’ailleurs appeler variables aléatoires.

Les propriétés les plus élémentaires des probabilités amènent à distinguer deux types de variables : les variables à échelonnement discret et les variables à évolution continue. Il faut dire que la décision sur le choix de l’une ou l’autre de ces représentations est, dans la majorité des situations, reliée aux propriétés physiques des systèmes objets de la simulation.

C’est à partir de ces premières considérations que sont introduits les moments et la variance des variables aléatoires et leurs fonctions caractéristiques. Si ces notions revêtent un caractère mathématique un peu abstrait, elles offrent aux statisticiens un moyen intéressant pour calculer la valeur moyenne d’une variable et la dispersion de cette variable. Des exemples empruntés à la physique microscopique aideront à comprendre l’immense intérêt pratique de ces notions.

En effet, l’étude de la cinétique des gaz fait intervenir un grand nombre de particules, dont il est impensable de décrire de façon déterministe le comportement individuel. Les probabilités aident à résoudre ces difficultés, puisqu’elles parviennent à relier des paramètres microscopiques, comme la masse et la vitesse des particules, à des paramètres macroscopiques accessibles à la mesure, telles la pression ou la température d’un gaz.

Les lois de probabilité utilisées en simulation ne résultent pas forcément des propriétés physiques des systèmes ; il faut souvent recourir à des catalogues de lois fondamentales dont nous exposerons les plus connues et utilisées.

Une attention particulière sera accordée à la loi normale ou loi de Gauss, dont bon nombre de phénomènes physiques suivent le profil.

Les mesures impliquent souvent le traitement d’un grand nombre de variables aléatoires ; nous dirons qu’il s’agit de systèmes à grand degré de liberté. Les tests statistiques utilisés avec ce type de variables ont souvent recours à la loi normale étendue ainsi qu’aux lois du χ 2 et de Student, dont nous décrivons les propriétés essentielles. Ces deux dernières lois convergent vers la loi normale lorsque le nombre de degrés de liberté augmente indéfiniment. Cette propriété remarquable, appelée limite centrale, est utilisée lors de l’estimation numérique des moyennes.

De nombreux processus aléatoires sont aussi gérés par des systèmes à deux variables qui peuvent ou non être liées statistiquement. Les notions de coefficient de corrélation et de courbes de régression sont particulièrement bien adaptées à ces systèmes à deux degrés de liberté, dans la mesure où elles en concrétisent la dépendance statistique.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-r210


Cet article fait partie de l’offre

Instrumentation et méthodes de mesure

(50 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

2. Probabilités des variables aléatoires discrètes

2.1 Variables aléatoires discrètes

Soit un ensemble E de N événements aléatoires. Si l’on associe à l’événement en la valeur numérique Xn , en devient une variable aléatoire. Contrairement aux variables aléatoires continues qui seront étudiées au paragraphe 3, les variables aléatoires discrètes suivent un échelonnement numérique discontinu :

X = (X1X2 , ... , Xj , ... , XN)

Ces valeurs peuvent être quelconques ou évoluer suivant une progression arithmétique ou géométrique. C’est notamment le cas si, lors du jet de dé, on assigne à chaque face une valeur numérique : la valeur 1 à la face 1, la valeur 2 à la face 2, etc. Chaque événement aléatoire se comporte alors comme une variable aléatoire couvrant un spectre de valeurs entières comprises entre 1 et 6.

Exemple

numérisation des signaux

La numérisation des signaux, telle qu’elle est pratiquée dès qu’il faut convertir un signal analogique en informations numériques, constitue un bel exemple de variables aléatoires discrètes.

Considérons un signal analogique v (t ) représentant une tension électrique qui évolue en fonction de la variable temps. La description du signal ne peut être déduite d’aucune loi déterministe, mais le signal est encadré par deux extrémums Vmin et Vmax (figure 1).

La numérisation consiste à prélever avec une période Te (période d’échantillonnage) des échantillons du...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Instrumentation et méthodes de mesure

(50 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Probabilités des variables aléatoires discrètes
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Instrumentation et méthodes de mesure

(50 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS