Présentation
RÉSUMÉ
Le développement industriel de la conversion photovoltaïque de l'énergie solaire comme source d'énergie électrique exige à la fois une réduction du coût du kWh produit et une augmentation substantielle du rendement de conversion des modules photovoltaïques actuels. Plusieurs nouveaux concepts et architectures de cellules solaires impliquant des matériaux nano-structurées sont potentiellement susceptibles d'atteindre cet objectif. Dans cet article, sont rappelés les facteurs limitant le rendement de conversion d'une cellule photovoltaïque. Sont passées ensuite en revue les différentes structures impliquant des nanomatériaux inorganiques pour réaliser des photopiles à très haut rendement. En particulier, les structures impliquant des puits quantiques pour l'augmentation de l'absorption des photons et la séparation des charges sont décrites, ainsi que les structures tandem ou à bande métallique utilisant des boîtes quantiques. Sont également évoquées les cellules à conversion de photons qui emploient des nanomatériaux pour modifier le spectre solaire avant son interaction avec la cellule absorbante.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Abdelilah SLAOUI : Directeur de recherche CNRS, responsable de l’équipe « Matériaux et concepts pour le photovoltaïque » à InESS-CNRS-UdS Strasbourg
INTRODUCTION
Le développement industriel de la conversion photovoltaïque de l’énergie solaire comme source d’énergie électrique exige à la fois une réduction du cout du kilowattheure produit et une augmentation substantielle du rendement de conversion des modules photovoltaïques actuels. Plusieurs nouveaux concepts et architectures de cellules solaires impliquant des matériaux nanostructurées sont potentiellement susceptibles d’atteindre un tel objectif.
Dans cet article, nous rappellerons les facteurs limitant le rendement de conversion d’une cellule photovoltaïque. Nous passerons ensuite en revue les différentes structures impliquant des nanomatériaux inorganiques pour réaliser des photopiles à très haut rendement. En particulier, nous décrirons les structures impliquant des puits quantiques pour l’augmentation de l’absorption des photons et la séparation des charges, et également les structures tandem ou à bande métallique qui utilisent des boîtes quantiques. Enfin, nous évoquerons les cellules à conversion de photons qui emploient des nanomatériaux pour modifier le spectre solaire avant son interaction avec la cellule absorbante.
Photovoltaic technology holds the promise of an almost inexhaustible energy source with minimal environmental impact. Significant reductions in the cost of PV-produced power are required to realize this potential. This can be accomplished through a significant increase of conversion efficiency at cell level and nanostructured inorganic structures can potentially meet this challenge.
Here, limiting factors of high efficiencies in single junction solar cells are first recalled. Then, approaches with potential in the short and long term focus on using nanostructured materials to enhance performance of solar cells are presented, such as multijunction cells based on arrays of Si nanoparticles, Virtual band gap solar cells for conversion of low energy photons through the use of quantum wells or dots, exciton multigeneration cells that uses quantum dots. Potential and limits of the different concepts and cell design will be presented.
Cellule photovoltaïque, puits quantiques, boites quantiques, absorption, rendement de conversion
Solar cells, quantum wells, quantum dots, absorption, conversion efficiency
Table analytique
La thématique
-
énergies ;
-
matériaux ;
-
sciences fondamentales.
VERSIONS
- Version courante de juil. 2022 par Clément REYNAUD
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Archives > [Archives] Matériaux fonctionnels - Matériaux biosourcés > Nanostructures pour cellules photovoltaïques inorganiques > État de l’art de l’industrie photovoltaïque
Accueil > Ressources documentaires > Archives > [Archives] Optique Photonique > Nanostructures pour cellules photovoltaïques inorganiques > État de l’art de l’industrie photovoltaïque
Cet article fait partie de l’offre
Innovations technologiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. État de l’art de l’industrie photovoltaïque
La production électrique cumulée produite par les modules photovoltaïques (PV) installés au niveau mondial a atteint actuellement 13,4 gigawatts (GW). Cette puissance correspond à celle que fournit toutes les cellules solaires installées actuellement et fonctionnant dans les conditions standards, soit un flux solaire AM1.5 de 1 000 W/m2 à 25 °C. La production a augmenté d’un ordre de grandeur au cours de cette dernière décade, affichant, depuis 2003, un taux de croissance annuel de plus de 50 % (figure 1). Pour la seule année 2008, la production de modules PV a été de l’ordre de 5 400 mégawatts (dans les conditions standards). La part de marché la plus importante des modules PV est assurée par la première génération de modules à base de plaquettes (150-300 µm d’épaisseur) en silicium cristallin (Si), monocristallin (sc-Si), multicristallin (mc-Si) ou ruban (ribbon) représentant ensemble de l’ordre de 93 % de la production totale de modules PV (figure 2). Cette génération de modules doit son succès à la disponibilité du silicium, à la maîtrise des procédés de fabrication et à l’automatisation des étapes. Elle permet d’obtenir un rendement de conversion de 18 à 24 % en laboratoire et de 15 à 20 % en production industrielle, suivant la cristallographie du silicium. Le reste du marché utilise les modules à base de couches minces en matériaux semi-conducteurs simple (silicium amorphe et microcristallin) ou composé (cuivre-indium-gallium-selenium CIGS, tellure de cadmium CdTe…). Ils constituent la deuxième génération pour laquelle des progrès importants ont été observés, ces dernières années, tant sur le rendement de conversion (de 10 à 18 %) que sur la fiabilité, accompagnés par le développement d’équipements appropriés à cette filière. Compte tenu du peu de matière utilisé et des technologies associées, le coût rendement/puissance généré est fortement orienté vers la baisse (< 1 euros par watt) par rapport à la filière dominante, mais un développement industriel est encore nécessaire. Il faut également tenir compte de l’approvisionnement en matières premières lorsqu’il s’agit d’éléments rares sur la terre tels que l’indium. La troisième génération...
Cet article fait partie de l’offre
Innovations technologiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
État de l’art de l’industrie photovoltaïque
BIBLIOGRAPHIE
-
(1) - DELACHAT (F.), SLAOUI (A.) et al - * - . – Nanotechnology 20, pp. 275608 (2009).
-
(2) - MURPHY (J.E.) et al - * - . – J. Am. Chem. Soc. 128 (10), p. 3241 (2006).
-
(3) - SERINCAN (U.) - Formation of semiconductor nanocrystals in SiO2 by ion implantation - Thèse, Middle East Technical University, Ankara, Turquie (2004).
-
(4) - GREEN (M.A.) - * - . – High Efficiency Silicon Solar Cells, Trans Tech Publications ed. (1987).
-
(5) - GREEN (M.A.) - Third Generation Photovoltaics : Advanced Solar Energy Conversion - Springer Science+Business Media, ISBN 3540401377 (2003).
-
(6) - UNSW School for Photovoltaic Engineering - Third Generation Photovoltaics - Retrieved on 2008-06-20.
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Cours interactifs sur la conversion photovoltaïque
http://pvcdrom.pveducation.org/
HAUT DE PAGE
-
Agence de l’environnement et de la maîtrise de l’énergie (ADEME)
-
Agence internationale de l’énergie
-
Institut de recherche et de développement de l’énergie photovoltaïque (IRDEP)
-
Institut national de l’énergie solaire (INES)
-
Institut national d’électronique du solide et des systèmes (INESS)
-
Systèmes solaires, l’observateur des énergies renouvelables
-
National Energy Laboratory
-
PV Status report 2008
...
Cet article fait partie de l’offre
Innovations technologiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive