Présentation

Article

1 - PRINCIPALES MATRICES ET FIBRES UTILISÉES

2 - MÉTHODES DE FABRICATION

3 - CARACTÉRISTIQUES D'UN PLI ÉLÉMENTAIRE

4 - PLAQUES MULTICOUCHES

5 - CONCLUSION

| Réf : BM5080 v2

Méthodes de fabrication
Structures en matériaux composites stratifiés

Auteur(s) : Bruno CASTANIÉ, Christophe BOUVET, Didier GUEDRA-DEGEORGES

Date de publication : 10 oct. 2013

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Cet article propose un socle de connaissances des structures composites stratifiées. Les principaux matériaux d'usage sont présentés, ainsi que leurs déclinaisons commerciales et les principaux moyens de mise en oeuvre. Les méthodes de prédimensionnement usuelles se basant sur la théorie des stratifiés classiques sont développées : calcul des contraintes dans les plis, critères de rupture associés, flambement, calcul d'assemblages. Les questionnements plus avancés comme l'impact, la fatigue, les endommagements ou le vieillissement sont aussi abordés.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Bruno CASTANIÉ : Professeur des Universités - INSA Toulouse, Institut Clément Ader

  • Christophe BOUVET : Professeur - ISAE Supaéro, Institut Clément Ader

  • Didier GUEDRA-DEGEORGES : Vice-président, head of technical capabilities center « Structure Engineering, production & aeromechanics » - EADS Innovation Works

INTRODUCTION

Les structures composites sont de plus en plus utilisées dans le domaine aérospatial mais aussi dans les domaines ferroviaire, naval, automobile et de loisir. La nature de ces matériaux fait qu'ils ont une très grande adaptabilité à chaque domaine et il est possible de choisir pour chaque structure le meilleur compromis coût/poids/tenue mécanique. On a l'habitude de dire qu'en composite « le matériau ne préexiste pas à la structure » et chaque design nécessite donc aussi d'associer la méthode de fabrication la plus adaptée aux contraintes économiques. Il existe une infinité de « composites » qui présentent toutefois tous la particularité de faire cohabiter plusieurs phases qui ne se mélangent pas à l'intérieur du matériau. Ce qui fait que, suivant les cas, les propriétés peuvent être pilotées par une phase plutôt qu'une autre à l'échelle de la structure. Par exemple, dans le cas d'ensembles fibres plus matrices auxquels nous allons restreindre l'article, si l'on considère un ensemble de fibres unidirectionnelles, c'est-à-dire orientées toutes dans la même direction, assemblées par une résine, on est en présence d'un pli unidirectionnel. Ce matériau présente d'excellentes propriétés en traction dans le sens des fibres, mais dans cette même direction, la résistance en compression est plus faible car le scénario de rupture est piloté par la résine. De plus, ce matériau est :

  • globalement homogène du point de vue macroscopique (pour un volume élémentaire, les caractéristiques macroscopiques sont les mêmes) ;

  • anisotrope (les caractéristiques dépendent de la direction considérée).

Il ne faut pas oublier que ces matériaux ne résistent correctement que dans une seule direction : celle des fibres. S'il existe des sollicitations équivalentes dans les directions x et y, il faudra disposer des fibres dans ces deux directions. Sachant que les fibres orientées suivant l'axe x n'amènent quasiment aucune résistance suivant l'axe y, un matériau comportant 50 % de fibres à 0o et 50 % de fibres à 90o aura alors des caractéristiques spécifiques deux fois plus faibles que celles du matériau unidirectionnel. S'il existe en plus des efforts à 45o et – 45o (cas des directions principales en cisaillement), il faudra disposer des fibres dans ces directions et cette fois les caractéristiques spécifiques seront presque divisées par quatre. Lorsque l'on a disposé des fibres avec le même pourcentage dans les directions 0o, 45o, – 45o et 90o, le matériau résultant a un comportement quasi isotrope dans le plan.

En fait, dans la réalité les structures sont en général soumises à des efforts très différents suivant les directions et il ne sera donc pas nécessaire de disposer autant de fibres dans les quatre directions 0o, 45o, – 45o et 90o. Le travail de l'ingénieur consistera à choisir le drapage optimisé permettant de résister aux sollicitations extérieures. C'est cette optimisation du drapage qui permettra d'obtenir des structures présentant un rapport performance/masse élevé.

Cet article a donc pour objectif de présenter un socle commun de connaissances des structures composites stratifiées qui doit permettre de comprendre les particularités de leur comportement. Il présente aussi les méthodes de prédimensionnement les plus classiques des jonctions et en flambement.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-bm5080


Cet article fait partie de l’offre

Fonctions et composants mécaniques

(214 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

2. Méthodes de fabrication

Il existe de nombreuses méthodes de fabrication et variantes. On se limitera dans cette partie aux méthodes censées permettre d'obtenir des pièces de qualités aéronautiques (volume de fibre > 65 % et de porosités < 1 %) sinon on pourra se reporter aux articles des Techniques de l'Ingénieur [AM 3 718], [AM 3 719]. On peut distinguer les méthodes de fabrication de préimprégnés et celles par voie liquide réservées aux tissus secs.

  • Méthodes pour préimprégnés

    • Moulage au sac en autoclave ou marouflage : la pression est exercée par l'intermédiaire d'une membrane en insérant la pièce et le moule dans un autoclave (figure 5), les produits volatils sont éliminés en faisant le vide entre la membrane et le moule. Un tissu de drainage permet d'assurer le débullage de façon uniforme. L'ajustement de la quantité de résine s'obtient par l'intermédiaire de la pression, un tissu d'absorption récupérant la résine en excès. Ce procédé permet d'élaborer des pièces reproductibles présentant de très hautes qualités mécaniques. Pour des carbones/époxy, il est usuel de cuire à 180o sous 7 bar.

    • Moulage à la presse : la pièce est comprimée entre un moule et un contre-moule par l'intermédiaire d'une presse ; dans cette technique, suivant la forme des pièces,...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Fonctions et composants mécaniques

(214 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Méthodes de fabrication
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BARRAU (J.-J.), LAROZE (S.) -   Calcul des structures en matériaux composites.  -  Eyrolles et Masson (1987).

  • (2) - GAY (D. ) -   Matériaux composites.  -  Hermes/lavoisier (2005).

  • (3) - BERTHELOT (J.M.) -   Matériaux composites : comportement mécanique et analyse des structures.  -  Éditions Technique et documentation (1999).

  • (4) - KASSAPOGLOU (C.) -   Design and analysis of composite structures.  -  Wiley (2010).

  • (5) - NIU (M.C.Y.) -   Composite airframe structures.  -  Hong-Kong Conmilit Press LTD (1992).

  • (6) - ZAGAINOV (G.I.), LOZINO-LOZINSKY (G.E.) -   Composite materials in aerospace design.  -  Chapman et Hall (1995).

  • ...

1 Revues scientifiques

Composite Sciences and Technolology (Elsevier)

Composite Part A (Elsevier)

Composite Part B (Elsevier)

Composite Structures (Elsevier)

Applied Composite Materials (Springer)

Journal of Composite Materials (Sage Publications)

HAUT DE PAGE

2 Événements

Salon : JEC Composites http://www.jeccomposites.com

Congrés : Journées Nationales sur les Composites, tous les 2 ans, AMAC, http://www.amac-composites.org/

International Conference on Composite Structures, ICCS Porto, tous les 2 ans

International Conference on Composite Materials, ICCM, tous les 2 ans, http://www.iccm-central.org/

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Fonctions et composants mécaniques

(214 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS