Présentation
Auteur(s)
-
Jean-Jacques BARRAU : Professeur à l’Université Paul-Sabatier Toulouse
-
Didier GUEDRA DEGEORGES : Chef du département Ingénierie des Structures Centre Commun de Recherche EADS
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
L’ingénieur désire dans un grand nombre de situations concevoir des structures présentant un rapport performance/masse le plus élevé possible. Cela est particulièrement vrai dans l’industrie aéronautique et spatiale. Pour obtenir ces performances, il recherche des matériaux ayant des caractéristiques spécifiques élevées. Les matériaux répondant à ce critère (verre, carbone, Kevlar, bore) présentent un défaut majeur : ils sont fragiles. Un petit défaut suffit pour amorcer la rupture totale de la structure. Pour pouvoir réaliser des structures suffisamment tolérantes aux dommages, il est nécessaire d’utiliser ces matériaux sous forme de fibres liées par une résine.
Considérons un ensemble de fibres unidirectionnelles, c’est-à-dire orientées toutes dans la même direction, assemblées par une résine. On est en présence d’un pli unidirectionnel. Ce matériau présente d’excellentes propriétés dans le sens des fibres, quoique moins bonnes que celles des fibres isolées, ce qui est normal puisque la résine apporte de la masse sans apporter d’amélioration des caractéristiques mécaniques supplémentaires. Ce matériau est :
-
globalement homogène du point de vue macroscopique (pour un volume élémentaire, les caractéristiques macroscopiques sont les mêmes) ;
-
anisotrope (les caractéristiques dépendent de la direction considérée).
À partir des résultats indiqués sur la figure 1 1 il semble qu’en utilisant ces nouveaux matériaux on pourra réaliser des gains de masse spectaculaires. Il ne faut pas oublier que ces matériaux ne résistent correctement que dans une seule direction : celle des fibres. S’il existe des sollicitations équivalentes dans les directions x et y, il faudra disposer des fibres dans ces deux directions. Sachant que les fibres orientées suivant l’axe x n’amènent aucune résistance suivant l’axe y, un matériau comportant 50 % de fibres à 0 o et 50 % de fibres à 90 o aura alors des caractéristiques spécifiques deux fois plus faibles que celles du matériau unidirectionnel (figure 1). S’il existe en plus des efforts à 45 o et – 45 o, il faudra disposer des fibres dans ces directions et cette fois les caractéristiques spécifiques seront presque divisées par quatre. Lorsque l’on a disposé des fibres avec le même pourcentage dans les directions 0 o, 45 o, – 45 o et 90 o, le matériau résultant a un comportement quasi isotrope dans le plan mais ses caractéristiques spécifiques ne sont guère plus importantes que celles que l’on peut obtenir avec des matériaux traditionnels.
En fait, dans la réalité les structures sont en général soumises à des efforts très différents suivant les directions et il ne sera donc pas nécessaire de disposer autant de fibres dans les quatre directions 0 o, 45 o, – 45 o, 90 o. Le travail de l’ingénieur consistera à choisir le drapage optimisé permettant de résister aux sollicitations extérieures. C’est cette optimisation du drapage qui permettra d’obtenir des structures présentant un rapport performance/masse élevé.
VERSIONS
- Version archivée 2 de oct. 2013 par Bruno CASTANIÉ, Christophe BOUVET, Didier GUEDRA-DEGEORGES
- Version courante de mai 2024 par Christophe BOUVET, Bruno CASTANIÉ
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Archives > [Archives] Conception et production > Structures en matériaux composites > Principales matrices et fibres utilisées
Cet article fait partie de l’offre
Fonctions et composants mécaniques
(214 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Principales matrices et fibres utilisées
Le lecteur pourra, pour plus de détails, se reporter aux références bibliographiques ainsi qu’aux articles des Techniques de l’Ingénieur.
1.1 Matrices
Pour lier les fibres ensemble, on utilise généralement des matrices qui se classent en trois grandes catégories : les résines thermodurcissables, les résines thermoplastiques et les matrices métalliques.
-
Résines thermodurcissables
Une résine thermodurcissable est une formulation de différents produits appartenant essentiellement à la chimie organique, qui possède la propriété de passer de façon irréversible d’un état liquide à un état solide.
-
Résine polyester : elle présente un bon accrochage sur les fibres, un prix bas, mais a un retrait important et une tenue réduite à la chaleur humide.
-
Résine époxyde : c’est la plus utilisée dans l’industrie aéronautique. Elle présente un bon accrochage sur les fibres, un faible retrait au moulage (de l’ordre...
-
Cet article fait partie de l’offre
Fonctions et composants mécaniques
(214 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Principales matrices et fibres utilisées
BIBLIOGRAPHIE
-
(1) - BARRAU (J.-J.), LAROZE (S.) - Calcul des structures en matériaux composites. - Eyrolles et Masson (1987).
-
(2) - ROUCHON (J.) - Matériaux composites pour structures d’aéronefs. - Polycopié ENSICA (1987).
-
(3) - Recent advances in composites. - ASTM 864 (1985).
-
(4) - Failure mechanics of composites. - Handbook of composites, vol. 3 (1985).
-
(5) - Environmental effects on composite materials. - Éd. George S. Springer (1985).
-
(6) - Les matériaux composites. - Tomes 1, 2. Éd. l’Usine nouvelle (1983).
-
(7) - TSAI (S.W.) - Introduction...
Cet article fait partie de l’offre
Fonctions et composants mécaniques
(214 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive