Présentation

Article

1 - OBJECTIF

2 - LIMITE D’ÉLASTICITÉ ET DÉPLACEMENT DE DISLOCATIONS

3 - PROPRIÉTÉS DES DISLOCATIONS ET DÉFORMATION PLASTIQUE

4 - LIMITE D’ÉLASTICITÉ DES MÉTAUX PURS ET NON DÉFORMÉS

5 - MÉCANISMES DE DURCISSEMENT DES ALLIAGES MÉTALLIQUES

6 - EFFETS DU DURCISSEMENT SUR LA DUCTILITÉ ET LA TÉNACITÉ DES ACIERS

7 - CONCLUSION

| Réf : M4340 v1

Limite d’élasticité des métaux purs et non déformés
Durcissement des aciers - Mécanismes

Auteur(s) : Barry THOMAS, Jean-Hubert SCHMITT

Date de publication : 10 mars 2002

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Les microstructures des alliages métalliques sont directement influencées par leur composition chimique et les traitements thermomécaniques subis : solution solide interstitielle et substitutionnelle, précipitations multiples, secondes phases, constituants métastables… Chacun de ces éléments contribue au durcissement de ces alliages. Cet article rappelle les principaux mécanismes de déformation plastique (dislocations, maclage, transformation de phase induite) et décrit leur impact sur la limite d’élasticité et l’écrouissage. Des relations quantitatives permettent de prévoir les caractéristiques mécaniques des alliages métalliques quelques exemples sont présentés pour les aciers en fonction des éléments d’alliage et des paramètres microstructuraux.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Barry THOMAS : Ancien Chef du département Métallurgie structurale - IRSID - Centre de recherche Usinor

  • Jean-Hubert SCHMITT : Ingénieur civil des Mines - Docteur ès sciences - Directeur du centre de recherches d’Isbergues - Usinor - Recherche et développement

INTRODUCTION

Les utilisateurs d’alliages métalliques ont besoin de métal pouvant être mis en forme aisément et capable d’acquérir les caractéristiques mécaniques lui permettant de résister efficacement à la déformation plastique et à la rupture dans les conditions d’emploi. On sait que les principaux mécanismes de la déformation plastique ont pour origine le déplacement, sous contrainte, des dislocations qui sont des configurations particulières d’atomes que l’on trouve dans tous les corps cristallins. Pour durcir un métal, autrement dit augmenter sa limite d’élasticité, il faut donc trouver les moyens de gêner le déplacement des dislocations sans l’entraver totalement afin d’éviter une fragilité inacceptable. Pour ce faire, on introduit dans le réseau cristallin des obstacles de différentes sortes qui freinent le déplacement des dislocations ; ce sont par exemple :

  • d’autres dislocations qui interceptent le plan de glissement des dislocations mobiles (durcissement par écrouissage) ;

  • des atomes étrangers en insertion ou en substitution dans le réseau cristallin (durcissement par soluté) ;

  • des précipités de particules de deuxième phase dispersées dans les grains (durcissement structural) ;

  • des joints de grains et des interfaces entre les constituants majeurs de la microstructure.

L’action de ces obstacles, seuls ou en combinaison, conduit à un éventail de procédés de durcissement dont la maîtrise s’est développée au fur et à mesure que nos connaissances se sont affinées. Dans l’exposé qui suit, nous examinerons les principaux mécanismes de durcissement des aciers en nous limitant au cas où la température d’emploi est bien inférieure à la température de fusion. Dans un deuxième article  dans le présent traité, nous montrons comment ces mécanismes sont utilisés pour le durcissement des différentes nuances d’aciers en fonction de leurs principaux constituants microstructuraux.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-m4340


Cet article fait partie de l’offre

Étude et propriétés des métaux

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

4. Limite d’élasticité des métaux purs et non déformés

4.1 Configuration des dislocations dans un cristal non déformé

La continuité de la structure cristalline impose que toute dislocation doive se fermer sur elle-même (boucle de dislocation) ou se terminer sur une autre dislocation, sur une surface libre ou sur une interface interne de la microstructure. Dans un cristal métallique non déformé, les dislocations s’arrangent en une configuration tridimensionnelle, plus ou moins complexe, appelée réseau de Frank (figure 6). Les segments de dislocations sont ancrés plus ou moins fortement aux jonctions entre dislocations que l’on appelle les nœuds du réseau de Frank. En l’absence de contraintes externes, les segments de dislocation entre les nœuds sont rectilignes afin de minimiser l’énergie élastique propre de l’ensemble des dislocations. La densité de dislocations ρ, exprimée en longueur totale des lignes par unité de volume, est de l’ordre de 104 à 106 cm · cm–3. La distance moyenne entre les nœuds L F ≍ 1/ est de l’ordre de 10 µm. Notons que ce type de configuration n’est possible que si les dimensions du cristal sont nettement supérieures à une dizaine de micromètres.

HAUT DE PAGE

4.2 Contrainte critique de cisaillement

Sous l’effet d’une sollicitation mécanique externe τ a , le glissement des blocs cristallins est réalisé par le glissement irréversible de différents segments du réseau de Frank situés dans les plans denses (figure 7). Le déplacement d’un tel segment, ancré aux nœuds du réseau, conduit à la formation d’une boucle lorsque la dislocation se referme sur elle-même (figure 7 e ) et, en même temps, à la reconstitution du segment initial. Le déplacement élémentaire des blocs cristallins est achevé quand la boucle balaie toute la surface du plan de glissement mais la reconstitution du segment initial permet au processus de se répéter sous l’action de la contrainte externe. Ainsi, il se crée en même temps, à...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Limite d’élasticité des métaux purs et non déformés
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS