Présentation

Article

1 - PROPRIÉTÉS PHYSIQUES DES FERRITES SPINELLES ET GRENATS

2 - SYNTHÈSE DES FERRITES

  • 2.1 - Ferrites monocristallins
  • 2.2 - Ferrites polycristallins

3 - QUEL FERRITE POUR QUELLE APPLICATION?

4 - LES FERRITES DE MANGANÈSE-ZINC ET LEURS APPLICATIONS

5 - LES FERRITES DE NICKEL-ZINC ET LEURS APPLICATIONS

6 - FERRITES À BASSE TEMPÉRATURE DE FRITTAGE POUR COMPOSANTS INDUCTIFS INTÉGRÉS

7 - FERRITES POUR HYPERFRÉQUENCES

| Réf : E1760 v2

Les ferrites de manganèse-zinc et leurs applications
Ferrites faibles pertes pour applications fréquentielles

Auteur(s) : Richard LEBOURGEOIS

Date de publication : 10 févr. 2000

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Richard LEBOURGEOIS : Docteur de l’Institut National Polytechnique de Grenoble - Ingénieur de l’École Nationale Supérieure d’Électricité de Grenoble - Responsable des Études Ferrites au Laboratoire Central de Recherches (LCR) de Thomson- CSF

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

La découverte de nouveaux oxydes magnétiques appelés ferrites au début du siècle a motivé tout d’abord de nombreux théoriciens qui ont tenté d’expliquer leurs propriétés magnétiques. C’est à partir des années 1940 que Louis Néel a commencé à élaborer sa théorie du ferrimagnétisme qu’il a appliqué à l’ensemble des ferrites avec succès. Cette théorie décrit essentiellement les propriétés magnétiques statiques de ces matériaux : aimantation à saturation et température de transitions. Par la suite, on a découvert de nombreuses applications à ces nouveaux matériaux, notamment pour les utilisations à haute fréquence rendues possibles grâce à leur résistivité électrique élevée (> 1 Ω · m) qui caractérise la plupart des oxydes.

Outre la résistivité, les paramètres essentiels qui caractérisent les ferrites sont :

  • l’aimantation à saturation Ms : elle varie de 0,15 à 0,60 T ;

  • le champ d’anisotropie Ha : il caractérise la rigidité avec laquelle l’aimantation est maintenue dans des directions privilégiées du cristal. Plus l’aimantation peut se déplacer facilement sous l’action d’un faible champ magnétique extérieur, plus le matériau a un champ coercitif faible, une perméabilité grande et des pertes faibles si les fréquences d’utilisation ne sont pas trop élevées. On appelle ferrite « dur » un ferrite « difficile » à aimanter présentant des champs coercitif et d’anisotropie élevés (Ha > 100 kA/m) et « ferrite doux » un ferrite « facile » à aimanter présentant des champs coercitif et d’anisotropie faibles (Ha < 10 kA/m).

Les ferrites de structure cristallographique hexagonale comme la magnétoplombite (hexaferrites) sont anisotropes. Leurs propriétés dans le plan de base (a,b) sont très différentes de celles suivant l’axe c perpendiculaire. Ce sont des matériaux magnétiques durs et sous forme polycristalline on les utilise principalement pour la production d’aimants permanents. Les ferrites hexagonaux les plus répandus sont les hexaferrites de strontium (baryum) de type M de composition chimique SrFe12O19(BaFe12O19).

À la différence des hexaferrites, les ferrites doux sont isotropes. Ils ont une structure cristallographique cubique et peuvent être classés en deux groupes selon leurs applications techniques.

  • Le premier groupe est celui des ferrites doux utilisés pour des fréquences allant de 10 kHz à 500 MHz dont nous parlerons dans les premiers paragraphes de cet article. Leur formule générique est MeFe2O4 où Me représente un métal de transition divalent ou une combinaison d’ions (cas d’un ferrite mixte). Leur nom de spinelles vient du minéral MgAl2O4 de même structure cristallogra-phique. Ces matériaux sont utilisés dans de vastes domaines tels que la conversion d’énergie ou le traitement du signal. Suivant la gamme de fréquence, on utilise :

    • des ferrites spinelles de manganèse-zinc (Mn-Zn) de 10 kHz à 1 MHz. Ces ferrites sont couramment appelés ferrites de puissance car ils sont largement utilisés comme composants inductifs en électronique de puissance (transformateurs ou inductances). Leur formule chimique est MnxZnyFezFe2O4 avec x+y+z=1. Leurs aimantations sont parmi les plus élevées des ferrites (jusqu’à 0,60 T) mais leurs résistivités électriques sont parmi les plus faibles (≈ 1 Ω · m). Ces matériaux font l’objet de la première partie de cet article ;

    • des ferrites spinelles de nickel-zinc (Ni-Zn) de 1 à 500 MHz. Leur formule chimique est NixZn1-xFe2 O4. Les aimantations sont plus modestes que pour les ferrites Mn-Zn (  0,50 T) mais les résistivités électriques atteignent 106 Ω · m ce qui en fait des matériaux adaptés pour les radiofréquences (f > 1 MHz). Ces matériaux font l’objet de la seconde partie de cet article. Les ferrites Ni-Zn-Cu à basse température de frittage dérivent de cette famille et font l’objet de la troisième partie.

  • Le second groupe est celui des ferrites doux pour hyperfréquences utilisés dans des dispositifs fonctionnant de 0,1 à 100 GHz. Ces ferrites sont soit du type grenat (même structure que le minéral Mn3 Al2Si3O12 ) comme le grenat d’yttrium-fer (YIG) de formule Y3 Fe5 O12, soit du type spinelle comme les ferrites Mg-Mn, Li-Zn, Ni-Zn et Ni-Al. Ces matériaux font l’objet de la dernière partie de cet article.

La grande diversité des ferrites vient des nombreuses possibilités de substitutions cationiques dans leurs solutions solides. Cela donne autant de propriétés magnétiques différentes que de combinaisons possibles. Nous essaierons de montrer que pour chaque type d’application (niveau de puissance, gamme de fréquence, gamme de température) il existe un matériau optimisé et que son optimisation passe par une analyse détaillée de son environnement électrique. Nous terminerons cette introduction en précisant que le nom « ferrite » désignant les oxydes ferrimagnétiques est masculin mais qu’il existe aussi la ferrite qui désigne une variété allotropique du fer.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-e1760


Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

4. Les ferrites de manganèse-zinc et leurs applications

Les ferrites de manganèse-zinc sont dans l’industrie des ferrites doux les plus importants puisqu’ils représentent environ 70 % du CA mondial. Leurs principales applications concernent les forts niveaux de puissance dans lesquels le matériau va transférer ou stocker l’énergie électrique sous forme magnétique et les bas niveaux dans lesquels le matériau va transmettre avec ou sans modifications des signaux de faible amplitude.

4.1 Ferrite Mn-Zn pour applications de puissance

Les applications dites de puissance des ferrites Mn-Zn concernent la conversion d’énergie électrique (convertisseurs continu-continu, alimentations à découpage). Dans ces applications, on utilise de préférence les ferrites Mn-Zn au détriment des matériaux magnétiques métalliques (tôles fer-silicium, fer-nickel ou amorphes) dès lors que la fréquence de fonctionnement dépasse le kilo-hertz. Les fréquences d’utilisation peuvent monter jusqu’à 1 MHz voire 2 MHz à condition de diminuer l’induction dans le matériau (cf. tableau 8). L’intérêt d’augmenter la fréquence de fonctionnement est qu’ainsi le produit B · f augmente et donc la puissance transmise par le transformateur.

Un seul ferrite ne peut couvrir toute la gamme de fréquence et tous les types de fonctionnement. Les fabricants de ferrites ont donc été amenés à optimiser plusieurs matériaux pour répondre aux diverses demandes. Quelques soient les fréquences et les inductions de fonctionnement des ferrites de puissance Mn-Zn, ces matériaux doivent être caractérisés en température car le transformateur d’une alimentation fonctionne à une température supérieure à 25 C, le plus souvent 60, 80 ou 100 C. Un exemple est donné figure 7 pour un ferrite de puissance optimisé à 100 C pour un fonctionnement à 100 kHz et 200 mT.

  • Ferrites de puissance à usage industriel

Ces matériaux ont des fréquences de fonctionnement basses (16 à 25 kHz), AVX/TPC (AVX/Thomson-CSF Passive Components) propose pour ce type d’applications un matériau B4 dont les performances sont données ci-après (voir tableau 9). Ces ferrites présentent des performances intéressantes (pertes et inductions à...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Les ferrites de manganèse-zinc et leurs applications
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - GUYOT (M.), CAGAN (V.) -   Temperature dependence of the domain wall mobility in YIG, deduced from the frequency spectra of the initial susceptibility of polycrystals  -  . JMMM 27, 1982, pp. 202-208.

  • (2) - MORINEAU (R.), PAULUS (M.) -   Chart of pO2 versus temperature and oxidization degree for Mn-Zn ferrites  -  . IEEE Trans. Mag., Mag. II, 1975, pp. 1312-1314.

  • (3) - LEBOURGEOIS (R.), PERRIAT (P.), LABEYRIE (M.) -   High and low level frequency losses in Ni-Zn and Mn-Zn spinel ferrites  -  . ICF 6, Tokyo, 1992, p. 1159.

  • (4) - LEBOURGEOIS (R.), GANNE (J.P.), PIGNARD (S.), GARRIN (P.), LIORET (B.) -   Effect of additions on electromagnetic properties of high frequency Mn-Zn ferrites  -  . Electroceramics IV, Aachen, 1994, pp. 1137.

  • (5) - de LAU (J.G.M.), STUIJT (A.L.) -   Chemical composition and high-frequency properties of Ni-Zn-Co ferrites  -  . Philips Res. Repts 21, 1966, pp. 104-112.

  • (6)...

1 Fabricants

HAUT DE PAGE

1.1 Références des matériaux ferrites équivalents

  • Ferrites de puissance Mn-Zn

  • Ferrites Ni-Zn

  • Ferrites hyperfréquences

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS