| Réf : E1031 v1

Conclusion et perspectives
Simulation électromagnétique - Modèles et optimisation

Auteur(s) : Michel NEY

Date de publication : 10 nov. 2006

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Michel NEY : Professeur à l’École Nationale Supérieure des Télécommunications ENST Bretagne - Directeur du laboratoire d’électronique et des systèmes de télécommunications (LEST) à Brest

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

La conception d’un dispositif a été longtemps une question d’expériences acquises par l’ingénieur en charge du travail. Certes, cette expérience reste actuellement un atout, mais ne suffit plus pour trouver une solution qui correspond aux spécifications ou à ce qui est plus communément appelé « le cahier des charges ». La raison principale est la complexité grandissante des dispositifs qui requiert un nombre croissant de paramètres modifiables (degrés de liberté) et un cahier des charges très étendu qui peut imposer des contraintes sur plusieurs paramètres de sortie. Ceci découle bien sûr d’une demande de systèmes ou dispositifs multiperformants. Par exemple, on peut requérir un gain important pour une antenne tout en exigeant un niveau de lobes secondaire inférieur à une certaine valeur pour des angles de pointage différents. Il faudra alors un nombre suffisant de degrés de liberté pour atteindre simultanément tous les objectifs. D’ailleurs, ce nombre devra augmenter avec celui des grandeurs de sortie, c’est-à-dire, celles à optimiser. Il serait donc impensable d’utiliser une approche par essais successifs en variant les paramètres d’entrée de façon purement intuitive. Même si l’expérience du concepteur permet de débuter avec une solution débouchant sur des performances pas trop éloignées de ce que l’on attend, la dernière étape, qui consiste à ajuster les nombreux paramètres pour une solution optimale, pourrait prendre plusieurs années suivant les cas. Il y a deux raisons à cela : les possibilités d’ajustement restent nombreuses et la mise en œuvre d’un prototype à chaque essai s’avérerait terriblement coûteuse. Même l’utilisation d’un modèle (qui devra être le plus rigoureux possible), pour la vérification des performances plutôt que la fabrication du prototype, n’enlève pas la difficulté dans la recherche d’une stratégie pour l’ajustement des grandeurs d’entrée.

Par exemple, les outils numériques de calcul électromagnétique sont des moyens d’analyse capables de prendre en compte des effets de couplage et de rayonnement électromagnétique de manière la plus rigoureuse possible. Cependant, leur utilisation implique un temps de calcul le plus souvent exhaustif. Il semble donc illusoire de les insérer directement dans un processus d’optimisation. Ceci constitue un des maillons faibles dans la procédure de conception assistée par ordinateur (CAO), bien que de nombreuses améliorations aient été faites pour rendre ces modèles d’analyse plus rapides. Avec certaines contraintes sur le domaine de validité, des approches alternatives, plus rapide, peuvent se substituer au modèle électromagnétique. Par exemple, des techniques de modèles équivalents de dispositifs ont été élaborées. Une structure peut être avantageusement remplacée par un circuit électrique équivalent dont le calcul des paramètres de sortie se fait relativement rapidement. On peut aussi établir des formules empiriques tirées de la mesure ou de résultats simulés au préalable. Un modèle plus flexible consiste à construire une base de données stockant, dans un espace multidimensionnel, les valeurs de la grandeur de sortie en fonctions des paramètres d’entrée. Pour des valeurs de paramètres d’entrée quelconques contenues dans le domaine d’opération, la grandeur de sortie se trouve par interpolation. Enfin, des techniques fondées sur les réseaux neuronaux permettent de simuler le comportement d’un dispositif après une période d’apprentissage.

Après la phase d’analyse des performances d’un prototype et si celui-ci ne répond pas au cahier des charges, il s’agit de changer les variables d’entrée, de façon à se rapprocher le plus rapidement possible de la solution répondant au cahier des charges. Il s’agit alors en termes d’analyse fonctionnelle de trouver l’extremum d’une fonction multivariables par des techniques mathématiques analytiques ou statistiques. Certaines techniques basées sur la méthode du gradient sont très connues et utilisées dans de nombreux logiciels. Nous pouvons aussi citer les approches variationnelles et porterons une attention particulière sur les algorithmes génétiques qui sont actuellement en plein développement dans beaucoup de disciplines.

Auparavant, la description des principaux paramètres de sortie couramment calculés dans la conception et l’analyse de dispositifs en hyperfréquences sont brièvement présentés ainsi que les méthodes pour les évaluer dans le cadre d’analyses par des simulateurs électromagnétiques.

Nota :

Ce dossier s’articule avec les autres dossiers de la collection :

  • « Bases de l’électromagnétisme » ;

  • « Structures de guidage HF. Modélisation et calculs » ;

  • « Simulation électromagnétique. Outils de conception ».

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e1031


Cet article fait partie de l’offre

Électronique

(228 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

4. Conclusion et perspectives

Après un rappel des différents paramètres calculés pour l’analyse des performances d’un dispositif en électromagnétisme, des méthodes pour en établir leur modèle équivalent ont été présentées. Ces modèles permettent de remplacer, avec plus ou moins de précision et sur un domaine limité, l’analyse rigoureuse des dispositifs qui est en principe requise. Pour des dispositifs de plus en plus complexes, l’utilisation de réseaux à neurones semble présenter quelque potentiel, bien que leur étape d’éducation prenne encore beaucoup de temps, puisqu’elle est faite par des modèles rigoureux.

Concernant la conception et l’optimisation des dispositifs, nous avons vu comment les modèles équivalents y sont insérés et nous avons brièvement présenté les différentes techniques qui permettent de corriger de façon convergente les différents paramètres d’entrées pour atteindre les objectifs (cahier des charges). Alors que depuis longtemps des algorithmes dits locaux, basés sur la technique quasi-Newton ou du gradient sont utilisés, nous observons récemment un vif intérêt pour les méthodes dites globales. Parmi les plus connues, nous avons présenté l’algorithme génétique (AG) avec des exemples illustratifs et brièvement le PSO qui a été proposé plus récemment.

Des recherches doivent encore être effectuées sur ces deux derniers algorithmes, pour évaluer leurs mérites respectifs dans le cadre d’aide à la conception de dispositifs. Il y a, notamment pour l’AG, beaucoup de choix de paramètres dans la sélection et la génération de populations. Par ailleurs, nous pourrions croire que les algorithmes globaux mènent à la solution imposée par le cahier des charges quelle que soit la population initiale d’individus. Malheureusement, nous assistons à des phénomènes de stagnation et l’utilisateur doit choisir les paramètres d’entrée ainsi qu’une population initiale appropriés pour obtenir un résultat intéressant. En effet, l’algorithme converge effectivement sur un optimum global mais celui-ci ne l’est qu’en fonction des degrés de liberté disponibles et des critères de sélection et méthodes de reproduction utilisés. C’est dans ces étapes que les connaissances et l’expérience du concepteur s’avèrent utiles. Enfin, il ne faut pas oublier les méthodes d’analyse, qui...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(228 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion et perspectives
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - HÉLIER (M.), NEY (M.), PICHOT (CH.) -   Structures de guidage HF, propagation et géométrie.  -  Techniques de l’ingénieur. Traité Électronique, (2003).

  • (2) - GARDIOL (F.) -   Hyperfréquences.  -  Traité d’Électricité, vol. 13, Presses polytechniques romandes (1981).

  • (3) - NEY (M.) -   Bases de l’électromagnétisme.  -  Techniques de l’ingénieur. Traité Électronique, (2004).

  • (4) - NEY (M.) -   Simulation électromagnétique. Outils de conception.  -  Techniques de l’ingénieur. Traité Électronique, [E 1 030] (2006).

  • (5) - ROGER (J.) -   Antennes. Bases et principes.  -  Techniques de l’ingénieur. Traité Électronique, (1998).

  • (6) - WERNER (P.L.), MITTRA (R.), WERNER (D.H.) -   Extraction...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(228 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS