Présentation
RÉSUMÉ
Les résonateurs diélectriques sont des pièces en céramique isolante à forte permittivité, utilisés pour remplacer les cavités micro-ondes et réduire leur volume. Comme elles, ils confinent les ondes électromagnétiques jusqu’à 95% de l’énergie dans la pièce avec le mode de résonance TE01d. Cet article introduit les circuits résonnants RLC, les cavités hyperfréquences, le passage aux résonateurs avec les modes de couplage. Le facteur de qualité des cavités et des résonateurs diélectriques est obtenu à partir de mesures de largeur de raie de résonance de filtres en transmission ou en absorption. D’autres modes de cavités chargées de diélectrique permettent la réduction de volume des filtres multi-pôles ou la montée en fréquence, tels les modes TM, HEM, TEM, ou les modes de galerie.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Pierre FILHOL : Ingénieur matériaux céramiques hyperfréquences - Temex
INTRODUCTION
Les résonateurs diélectriques sont des objets en céramique polycristalline nue ou métallisée, ou monocristallins, utilisés comme circuits résonants de base pour la réalisation de filtres et d’oscillateurs hyperfréquences, entre quelques dizaines de mégahertz et quelques dizaines de gigahertz.
Les filtres permettent la sélection d’une bande de fréquence et peuvent servir au multiplexage des fréquences comme dans les stations de base des radiotéléphones, la séparation des voies d’émission et réception de téléphones portables, etc. Ces dispositifs sont utilisés dans les applications GSM (Global System Mobile), UMTS (Universal Mobile Telecommunications System) et GPS (Global Positioning System).
Les oscillateurs comprennent, outre le résonateur, un circuit intégré actif. Le circuit résonant sert à stabiliser la fréquence d’émission de l’oscillateur. Un exemple d’application des plus courants est le cas de la réception directe de télévision par satellite (« television reception oscillator » : TVRO) ; l’oscillateur local émet à une fréquence proche de la fréquence reçue du satellite et permet, par différence, de convertir à des fréquences plus basses utilisables dans les appareils de télévision. Ces dispositifs sont employés dans les antennes paraboliques de réception de télévision par satellite.
Les résonateurs diélectriques non métallisés sont logés dans des boîtiers métalliques. Ils fonctionnent sur des modes diélectriques qui concentrent l’énergie dans le résonateur. Le mode fondamental est le mode en coordonnée cylindrique TE01δ , le diamètre du résonateur étant de l’ordre de grandeur de la longueur d’onde dans le résonateur. D’autres modes sont utilisés (hybrides, de galerie, etc.).
Pour les résonateurs métallisés en mode TEM, la longueur du résonateur est le quart de la longueur d’onde dans le résonateur (figure 1).
Les caractéristiques des dispositifs résonants à résonateur diélectrique dépendent des caractéristiques du résonateur diélectrique (tableau 1).
Les résonateurs remplacent les cavités métalliques ; comme elles, ils présentent :
-
des modes de résonance dont les fréquences sont déterminées par les dimensions ;
-
des coefficients de qualité Q élevés.
En outre, ils présentent les avantages suivants :
-
dimensions réduites du fait de la permittivité ε supérieure à celle de l'air ;
-
grande stabilité en température de la fréquence (τ f ) ;
-
simplicité de mise en œuvre.
L’emploi du résonateur diélectrique permet de réduire les dimensions des cavités d’un facteur égal à la racine de la permittivité relative εr = ε / ε0 .
La dérive relative de la fréquence en température τf des cavités métalliques est opposée à la dilatation thermique ; dans le cas de cavités en aluminium, le coefficient de la dilatation thermique est de l’ordre de 20 · 10 –6/K (ou 20 ppm /K), valeur trop élevée dans les applications, et qui oblige à utiliser un alliage, l’Invar, plus coûteux ; le développement de compositions diélectriques dont le coefficient de variation thermique de la permittivité est de l’ordre du ppm par kelvin, a permis de réaliser avec les résonateurs diélectriques des dérives du même ordre que celles obtenues avec des cavités en Invar.
Enfin, le résonateur diélectrique est posé directement à proximité des éléments du circuit sans avoir besoin d’utiliser de connecteurs et/ou de liaisons complexes.
Les résonateurs diélectriques sont cependant limités par leur facteur de qualité : aux basses températures, notamment à 77 K, température de liquéfaction de l’azote, des composants à base de matériau supraconducteur, et des diélectriques monocristallins comme le saphir, sont préférés pour atteindre des facteurs de qualité des circuits de plus d’un ordre de grandeur supérieurs.
Les matériaux dans lesquels sont fabriqués les résonateurs diélectriques sont essentiellement à base d’oxyde de titane (TiO2 ) ou à base d’oxyde de tantale (Ta2O5 ), ces derniers offrant des facteurs de qualité plus élevés.
On trouve les caractéristiques suivantes :
-
permittivité diélectrique relative εr variable de 10 à 100 ;
-
coefficient de qualité Q entre 103 et quelques 104 à 10 GHz ;
-
coefficient de stabilité thermique de la fréquence de résonance τf compris entre 0 et + 20 ppm/K garanti dans des plages les plus resserrées possibles (± 2 à ± 0,05 ppm/K).
Le choix du matériau découle de deux propriétés générales des matériaux diélectriques, à savoir que le coefficient de qualité décroît quand la fréquence ou la permittivité augmentent. Comme les dimensions des circuits sont inversement proportionnelles à la fréquence et à la racine de la permittivité, on peut utiliser des résonateurs avec des permittivités d’autant plus faibles que la fréquence est élevée (par exemple, εr = 80 vers 1 GHz et εr = 37 vers 10 GHz avec le même facteur de qualité de 5 000).
Ce premier article présente le résonateur diélectrique comme élément de circuit en remplacement des guides d’ondes, avec son mode de fonctionnement principal (mode TE01δ ). La manière de le coupler avec divers éléments (boucle, ligne microruban) au circuit extérieur est exposée ; d’autres modes de fonctionnement sont aussi présentés (résonateur coaxial, en technologie microruban, modes de galerie). La caractérisation du résonateur sous forme d’un élément de filtre permet de remonter aux pertes diélectriques du matériau. Le deuxième article Résonateurs diélectriques- Matériaux et composants décrit la caractérisation de la permittivité complexe du matériau ainsi que celle de la dérive en température de la fréquence de résonance, et donne le procédé général céramique de fabrication. L’origine physique de la permittivité, des pertes diélectriques et de la stabilité thermique des matériaux est introduite. Une gamme de matériaux est proposée. La mise en œuvre des résonateurs puis quelques exemples d’applications sont aussi donnés.
VERSIONS
- Version courante de avr. 2016 par Pierre FILHOL
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Circuits
Un tableau des notations et symboles peut être consulté à la fin de l’article.
Aux fréquences supérieures au gigahertz, les circuits hyperfréquences passifs sont composés d’éléments tels que lignes de propagation, coaxiales, microrubans, guides d’ondes, etc., ainsi que de cavités résonantes. Ces éléments ont des dimensions du même ordre de grandeur ou supérieures à la longueur de l’onde électromagnétique ; il est d’usage de traduire ces circuits en schémas équivalents basses fréquences avec des résistances, inductances et condensateurs. On appelle f la fréquence du signal considéré, ω est la pulsation correspondante :
Les circuits résonants sont caractérisés par :
-
leur fréquence de résonance f r (Hz) ou pulsation ω r (rad/s) à l’optimum du signal électromagnétique ;
-
leur bande passante δf (Hz) (figure 2 et encadré 1) ;
-
leur facteur de qualité ou de surtension Q défini par où W est l’énergie électrostatique maximum emmagasinée dans le circuit (ou énergie réactive), et est l’énergie dissipée pendant une période, à . On montre que, pour un circuit résonant constitué d’une résistance R, d’une inductance L et d’une capacité C en série, , R représentant l’élément dissipatif. On recherchera à relier Q à la bande passante.
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Circuits
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive