Présentation

Article

1 - CONTEXTE

2 - MICROALGUES OLÉAGINEUSES

  • 2.1 - Microalgues : des micro-organismes unicellulaires réalisant la photosynthèse oxygénique
  • 2.2 - Diversité biologique des microalgues
  • 2.3 - Métabolisme carboné : de la capture du CO2 à la production de sucres et d'huiles
  • 2.4 - Teneur et qualité en huile des microalgues oléagineuses

3 - QUESTIONS BIOLOGIQUES ET BIOTECHNOLOGIQUES

  • 3.1 - Manipulation au laboratoire
  • 3.2 - Huiles : une source pour le biodiesel et le biokérosène
  • 3.3 - Conciliation entre biomasse et teneur en huile
  • 3.4 - Verrous biologiques

4 - PROCÉDÉS DE CULTURE ET DE RÉCOLTE DES MICROALGUES

5 - COLLECTE, EXTRACTION ET CONVERSION

  • 5.1 - Extraction de l'huile d'un matériel hydraté
  • 5.2 - Conversion de l'huile en biocarburant

6 - UNE FILIÈRE EN CONSTRUCTION

  • 6.1 - Vision linéaire de la filière
  • 6.2 - Vision intégrée de la filière

7 - CONCLUSION

| Réf : IN186 v1

Conclusion
Carburants à base d'algues oléagineuses - Principes, filières, verrous

Auteur(s) : Eric MARECHAL

Date de publication : 10 févr. 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Certains organismes photosynthétiques sont capables de capturer le CO2 atmosphérique et de produire une biomasse riche en huile. Cette huile est considérée, de ce fait, comme une ressource renouvelable qui pourrait devenir une alternative aux hydrocarbures fossiles. Cet article fournit une définition détaillée de ce que l'on entend par microalgue, huile, biocarburant, et donne un état de l'art des technologies de culture, de récolte, d'extraction d'huile et de conversion en biodiesel, du laboratoire à l'échelle pilote, soulignant les verrous biotechnologiques et technologiques à lever dans l'avenir.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Eric MARECHAL : Directeur de recherche CNRS, chef de l'équipe Homéostasie des glycérolipides Laboratoire de physiologie cellulaire et végétale, Institut de recherche en sciences et technologies pour le vivant, CEA Grenoble, France

INTRODUCTION

Résumé

Certains organismes photosynthétiques sont capables de capturer le CO2 atmosphérique et de produire une biomasse riche en huile. Cette huile est considérée, de ce fait, comme une ressource renouvelable qui pourrait devenir une alternative aux hydrocarbures fossiles. Cet article fournit une définition détaillée de ce que l'on entend par microalgue, huile, biocarburant, et donne un état de l'art des technologies de culture, de récolte, d'extraction d'huile et de conversion en biodiesel, du laboratoire à l'échelle pilote, soulignant les verrous biotechnologiques et technologiques à lever dans l'avenir.

Abstract

Some photosynthetic organisms can capture atmospheric CO2 and produce a biomass, with high levels of oil. This oil is therefore considered as a renewable resource, which could become an alternative to fossil hydrocarbons. This article provides a detailed definition of what is meant by microalgae, oil and biofuel, and gives a brief state of the art of technologies for cultivation, harvesting, oil extraction and conversion into biodiesel, from the laboratory to the pilot scale, highlighting the biotechnological and technological challenges which should be addressed in the future.

Mots-clés

Biotechnologies, procédés d'extraction, biodiesel, biokérosène, culture des microalgues, extraction d'huile, biocarburant

Keywords

Biotechnologies, extraction processes, biodiesel, jetfuel, microalgae cultivation, oil-extraction, biofuel

Points clés

Domaine : Techniques de production et de transformation de microalgues

Degré de diffusion de la technologie : Émergence | Croissance | Maturité

Technologies impliquées : Génie génétique, biologie moléculaire, biotechnologies, culture de micro-organismes, extraction d'huiles

Domaines d'application : Biocarburants, bioénergie, biomolécules, chimie verte, lubrifiants, cosmétique, nutrition humaine et animale

Principaux acteurs français :

Pôles de compétitivité : Institut de biologie de l'École normale supérieure – Laboratoire de génomique des organismes photosynthétiques (IBENS Paris) ; Institut de biologie physico-chimique (IBPC Paris) ; Laboratoire de génie des procédés – environnement – agro-alimentaire (GEPEA Saint Nazaire) ; Laboratoire de bioénergétique et biotechnologie des bactéries et microalgues (LB3M – CEA Cadarache) ; Laboratoire de physiologie cellulaire & végétale (LPCV-CEA Grenoble) ; Université Pierre et Marie Curie – Laboratoire de génomique fonctionnelle des diatomées (UPMC Paris)

Centres de compétence : Mer Bretagne, Mer Méditerranée, Végépolys, Trimatec, Axelera

Industriels : Algenics's, Algosource Technologies, Algaestream, Alpha Biotech, Bioalgostral Océan, Fermentalg, Greensea, Innovalg, Microphyt, Phycosource, Roquette, Microphyt, Total Énergies Nouvelles

Autres acteurs dans le monde : DSM Nutritional-Martek, Lonza, Nisshin Oillio Group, Solazyme, Dow, Unilever

Contact : [email protected]

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-in186


Cet article fait partie de l’offre

Éco-conception et innovation responsable

(138 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

7. Conclusion

Les microalgues oléagineuses sont une ressource prometteuse pour l'avenir, mais les efforts sont encore importants pour lever plusieurs verrous technologiques. Côté biologie, la recherche amont doit être soutenue afin de combler les lacunes de connaissances sur les nouveaux modèles d'organismes photosynthétiques, de cribler la biodiversité marine et d'en exploiter au mieux le potentiel, de développer et mettre en œuvre des méthodes d'ingénierie génétique pour maîtriser les microalgues comme des usines cellulaires, cela par des approches de biologie synthétique, de concilier production de biomasse et accumulation d'huile et enfin de produire une huile de qualité appropriée . Les questions à résoudre sont nombreuses. Comment améliorer l'efficacité de la photosynthèse ? Comment améliorer la capture de CO2 par les cellules ? Comment réduire le besoin en nutriments dont l'azote et le phosphate ? Comment améliorer la pénétration de la lumière dans des cultures denses ? Comment orienter le métabolisme carboné vers les huiles ? Comment mener les cellules à sécréter de l'huile ? Comment favoriser l'autofloculation de la biomasse pour aider à la récolte ?

Côté procédés, les systèmes de culture sont à optimiser pour assurer la production en masse en maîtrisant les paramètres eau, lumière et gaz, ainsi que la récolte. La mise en place de fermes de production s'intègre à l'échelle des territoires dans des problématiques de gestion et de qualité des eaux usées. L'extraction de l'huile, enfin, est une des questions les plus difficiles, partant d'un matériel hydraté et intégré à l'intérieur de cellules biologiques, en tentant de limiter l'utilisation de solvants, la production d'émulsion ou la destruction des coproduits. Il est aujourd'hui évident que la production de biocarburants à partir de microalgues nécessitera encore de nombreuses années, dans un contexte plus général qui est celui de la chimie verte.

Remerciements

L'auteur souhaite...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Éco-conception et innovation responsable

(138 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - PETROUTSOS (D.), AMIAR (S.), ABIDA (H.), DOLCH (L.-J.), BASTIEN (O.), REBEILLE (F.), JOUHET (J.), FALCONET (D.), BLOCK (M.A.), McFADDEN (G.I.), BOWLER (C.), BOTTE (C.), MARECHAL (E.) -   Evolution of galactoglycerolipid biosynthetic pathways. From cyanobacteria to primary plastids and from primary to secondary plastids.  -  Progress in Lipid Research, 54, p. 68-85 (2014).

  • (2) - LEVITAN (O.), DINAMARCA (J.), HOCHMAN (G.), FALKOWSKI (P.G.) -   Diatoms : a fossil fuel of the future.  -  Trends in Biotechnology, 32, p. 117-124 (2014).

  • (3) - BEISSON (F.), LI-BEISSON (Y.), PELTIER (G.), FINAZZI (G.), MARECHAL (E.), CHAUVAT (F.), DELRUE (F.), FROMENT (K.), BLET (V.) -   Des microalgues pour la production des biocarburants.  -  Les clefs du CEA. Les énergies bas carbone, 61, p. 42-49 (2013).

  • (4) - CHISTI (Y.) -   Biodiesel from microalgae.  -  Biotechnology Advances, 25, p. 294-306 (2007).

  • (5) - RAZZAK (S.A.), HOSSAIN (M.M.), LUCKY (R.A.), BASSI (A.), BASSI (S.), DE LASSA (H.) -   Integrated CO2 capture, wastewater treatment and biofuel production...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Éco-conception et innovation responsable

(138 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS