Présentation
RÉSUMÉ
Les céramiques ferroélectriques de structure pérovskite à base de plomb comme les zircono-titanate de plomb (PZT) sont des matériaux piézoélectriques très utilisés technologiquement. Dans ces structures pérovskites, les propriétés ferroélectriques varient continument avec le taux de substitution cationique. De plus, un grand nombre de modifications chimiques est possible afin de moduler les propriétés piézoélectriques. Les coefficients de couplage électromécaniques élevés des PZT sont largement utilisés pour les applications de transduction (capteurs et actionneurs) et pour le filtrage large bande. Cependant, leur utilisation aux températures élevées requiert d'éviter les transitions de phases qui sont à l'origine de l'instabilité des propriétés avec la température.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The lead zirconate titanate (PZT) system is technologically one of most important ferroelectric ceramics. In these perovskites structures, ferroelectric properties vary continuously with the level of cationic substitution and a large number of chemical modifications are possible in order to modulate the piezoelectric properties. The high electromechanical coupling coefficients of PZTs are widely applied to transduction applications (sensors and actuators) as well as broadband filtering. However, their use at high temperatures presents many challenges, such as phase transitions, which in general lead to the instability of the properties.
Auteur(s)
-
Philippe PAPET : Professeur à Polytech Montpellier - Université Montpellier 2
INTRODUCTION
Les matériaux ferroélectriques forment une classe importante de matériaux piézoélectriques. En effet, ils possèdent une polarisation électrique spontanée des domaines qui engendre des déformations mécaniques. Le couplage entre la modulation de la polarisation et les déformations du réseau dû à la piézoélectricité dans les matériaux ferroélectriques se caractérise par des variations notables de la polarisation (ou des déformations) quand on leur applique une contrainte mécanique (ou un champ électrique) et les ferroélectriques possèdent les plus forts coefficients piézoélectriques.
Actuellement, les matériaux piézoélectriques les plus importants technologiquement sont les céramiques ferroélectriques de structure pérovskite à base de plomb comme les zircono-titanate de plomb (PZT), avec un domaine de solution solide qui s'étend du titanate de plomb jusqu'au zirconate de plomb. Dans ces structures pérovskites, les propriétés ferroélectriques varient continûment avec le taux de substitution cationique et un grand nombre de modifications chimiques sont possibles afin de moduler les propriétés piézoélectriques. De plus, il y a un comportement spécifique, présent dans toute une série de pérovskite à base de plomb, caractérisé par les transitions de phases ferroélectriques et qui se manifeste par la présence, dans un domaine étroit de composition, d'une frontière de phases morphotropiques appelée MPB, et pour laquelle les propriétés piézoélectriques sont maximales. Ces caractéristiques mettent bien en évidence le fait que ces pérovskites combinent les propriétés désirées pour un grand domaine d'applications.
Les coefficients de couplage électromécaniques élevés des piézoélectriques ferroélectriques sont largement utilisés pour les applications de transduction (capteurs et actionneurs) et pour le filtrage large bande. Les matériaux piézoélectriques qui peuvent opérer à hautes températures sont recherchés pour des capteurs ou des actionneurs spécifiques et sont actuellement en cours de développement. Cependant, leur utilisation aux températures élevées requiert d'éviter les transitions de phases qui sont à l'origine de l'instabilité des propriétés avec la température. Ainsi, dans le cas des matériaux ferroélectriques, le challenge est d'obtenir une température de Curie nettement supérieure à celle de l'application.
Cet article est divisé en quatre parties. Après un rappel des définitions de la piézoélectricité et l'établissement des lois constitutives pour décrire les propriétés des matériaux piézoélectrique, nous nous focalisons, dans la seconde partie, sur les matériaux ferroélectriques, en particulier ceux avec une structure pérovskite. Les relaxeurs et les polymères sont aussi abordés dans cette partie. Dans la troisième partie, les céramiques ferroélectriques de type PZT sont détaillées et les effets de la modulation des propriétés par la composition chimique et la microstructure sont décrits. Dans la quatrième partie, des exemples d'applications sont donnés et le cas des matériaux piézoélectriques pour les hautes températures est discuté.
MOTS-CLÉS
piézoélectrécité céramiques ferroélectriques de structure pérovskite PZT environnement énergie électronique automobile télécommunications couplage électromécanique matériaux céramiques
KEYWORDS
piezoelectrecity | ferroelectric ceramics with perovskite structure | environment | energy | electronics | automotive | wireless communications | electromechanical coupling | ceramic materials
VERSIONS
- Version archivée 1 de janv. 1986 par Denise SANDINO
- Version courante de juin 2022 par Philippe PAPET
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Archives > [Archives] Verres et céramiques > Matériaux piézoélectriques : les céramiques oxydes à base de métaux de transition > Conclusion
Accueil > Ressources documentaires > Archives > [Archives] Matériaux fonctionnels - Matériaux biosourcés > Matériaux piézoélectriques : les céramiques oxydes à base de métaux de transition > Conclusion
Cet article fait partie de l’offre
Caractérisation et propriétés de la matière
(115 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Conclusion
En termes de propriétés électriques et mécaniques, les céramiques piézoélectriques présentent certains avantages :
-
ce sont des matériaux inorganiques fragiles aux températures d'usages, avec des modules de Young élevés, de l'ordre de 60 à 70 GPa et qui ne tolèrent que de faibles déformations (200 à 800 ppm) ;
-
selon le mode de déformation, le coefficient de couplage électromécanique peut varier entre 0,25 et 0,75 ;
-
la température de fonctionnement peut être supérieure à la température ambiante, mais elle doit être inférieure à la température de Curie, qui se situe entre 250 et 300 oC, selon la composition chimique (pour éviter une dépolarisation partielle et un vieillissement accéléré, on se limite en général à des températures d'utilisation 100 oC en dessous de la température de Curie) ;
-
les pertes diélectriques, qui sont représentées par un angle de pertes δ, dont la tangente est comprise entre 0,005 et 0,02 sont faibles.
En raison de leurs performances piézoélectriques, constante de charge et coefficient de couplage élevés, les céramiques piézoélectriques sont les matériaux les plus couramment utilisées dans la famille des matériaux électroactifs. Elles sont généralement commercialisées sous la forme de céramiques massives (barreaux parallélépipédiques, disques, plaquettes, tubes) ou sous la forme d'empilements de céramiques. Ces derniers permettent d'obtenir des déplacements plus importants par mise en série mécaniquement de plusieurs céramiques d'épaisseur relativement faible ne nécessitant pas des tensions élevées pour les déformer.
Les polyméres piézoélectriques semblent moins attractifs que les céramiques si l'on ne se focalise que sur les caractéristiques piézoélectriques et diélectriques. En effet, les constantes de charge d 33 et d 31 sont un ordre de grandeur plus faibles, les coefficients de couplage n'excèdent pas la valeur 0,3, et la permittivité diélectrique relative se situe aux alentours de 10 avec des pertes diélectriques élevées (tan δ = 0,2-0,3). Les principales qualités de ces polymères résident dans :
-
leurs propriétés mécaniques qui...
Cet article fait partie de l’offre
Caractérisation et propriétés de la matière
(115 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - CURIE (P.), CURIE (J.) - Comptes rendus des séances de l'académie des sciences. - Tome 91, Paris (1880).
-
(2) - BERTIN (M.), FAROUX (J.P.), RENAULT (J.) - Électromagnétisme. - Éd. : Dunod Université (1984).
-
(3) - NYE (J.F.) - Physical Properties of Crystals. - Ed. : Oxford University Press (1985).
-
(4) - DAMJANOVIC (D.) - * - Rep. Prog. Phys., 61, p. 1267 (1998).
-
(5) - ROYER (D.), DIEULESAINT (E.) - Ondes élastiques dans les solides. - Tome 1, Éd. : Masson (1999).
-
(6) - BRISSAUD (M.) - Matériaux piézoélectriques. - Éd. : Presses Polytechniques et Universitaires Romandes (2007).
-
...
DANS NOS BASES DOCUMENTAIRES
-
Céramiques pour composants électroniques.
Cet article fait partie de l’offre
Caractérisation et propriétés de la matière
(115 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive