Présentation

Article

1 - PRINCIPALES MATRICES ET FIBRES UTILISÉES

2 - MÉTHODES DE FABRICATION

3 - CARACTÉRISTIQUES D'UN PLI ÉLÉMENTAIRE

4 - PLAQUES MULTICOUCHES

5 - CONCLUSION

| Réf : BM5080 v2

Plaques multicouches
Structures en matériaux composites stratifiés

Auteur(s) : Bruno CASTANIÉ, Christophe BOUVET, Didier GUEDRA-DEGEORGES

Date de publication : 10 oct. 2013

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Cet article propose un socle de connaissances des structures composites stratifiées. Les principaux matériaux d'usage sont présentés, ainsi que leurs déclinaisons commerciales et les principaux moyens de mise en oeuvre. Les méthodes de prédimensionnement usuelles se basant sur la théorie des stratifiés classiques sont développées : calcul des contraintes dans les plis, critères de rupture associés, flambement, calcul d'assemblages. Les questionnements plus avancés comme l'impact, la fatigue, les endommagements ou le vieillissement sont aussi abordés.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Laminated composite structures

A knowledge base on laminated composite structures is offered by this article. The main materials used are presented, as well as their commercial variations and their major implementation means. The usual pre-design methods based on the theory of traditional laminates are developed: the calculation of stresses in the folds, associated criteria of rupture, buckling and joining. More advanced issues such as impact, fatigue, damage or aging are also dealt with.

Auteur(s)

  • Bruno CASTANIÉ : Professeur des Universités - INSA Toulouse, Institut Clément Ader

  • Christophe BOUVET : Professeur - ISAE Supaéro, Institut Clément Ader

  • Didier GUEDRA-DEGEORGES : Vice-président, head of technical capabilities center « Structure Engineering, production & aeromechanics » - EADS Innovation Works

INTRODUCTION

Les structures composites sont de plus en plus utilisées dans le domaine aérospatial mais aussi dans les domaines ferroviaire, naval, automobile et de loisir. La nature de ces matériaux fait qu'ils ont une très grande adaptabilité à chaque domaine et il est possible de choisir pour chaque structure le meilleur compromis coût/poids/tenue mécanique. On a l'habitude de dire qu'en composite « le matériau ne préexiste pas à la structure » et chaque design nécessite donc aussi d'associer la méthode de fabrication la plus adaptée aux contraintes économiques. Il existe une infinité de « composites » qui présentent toutefois tous la particularité de faire cohabiter plusieurs phases qui ne se mélangent pas à l'intérieur du matériau. Ce qui fait que, suivant les cas, les propriétés peuvent être pilotées par une phase plutôt qu'une autre à l'échelle de la structure. Par exemple, dans le cas d'ensembles fibres plus matrices auxquels nous allons restreindre l'article, si l'on considère un ensemble de fibres unidirectionnelles, c'est-à-dire orientées toutes dans la même direction, assemblées par une résine, on est en présence d'un pli unidirectionnel. Ce matériau présente d'excellentes propriétés en traction dans le sens des fibres, mais dans cette même direction, la résistance en compression est plus faible car le scénario de rupture est piloté par la résine. De plus, ce matériau est :

  • globalement homogène du point de vue macroscopique (pour un volume élémentaire, les caractéristiques macroscopiques sont les mêmes) ;

  • anisotrope (les caractéristiques dépendent de la direction considérée).

Il ne faut pas oublier que ces matériaux ne résistent correctement que dans une seule direction : celle des fibres. S'il existe des sollicitations équivalentes dans les directions x et y, il faudra disposer des fibres dans ces deux directions. Sachant que les fibres orientées suivant l'axe x n'amènent quasiment aucune résistance suivant l'axe y, un matériau comportant 50 % de fibres à 0o et 50 % de fibres à 90o aura alors des caractéristiques spécifiques deux fois plus faibles que celles du matériau unidirectionnel. S'il existe en plus des efforts à 45o et – 45o (cas des directions principales en cisaillement), il faudra disposer des fibres dans ces directions et cette fois les caractéristiques spécifiques seront presque divisées par quatre. Lorsque l'on a disposé des fibres avec le même pourcentage dans les directions 0o, 45o, – 45o et 90o, le matériau résultant a un comportement quasi isotrope dans le plan.

En fait, dans la réalité les structures sont en général soumises à des efforts très différents suivant les directions et il ne sera donc pas nécessaire de disposer autant de fibres dans les quatre directions 0o, 45o, – 45o et 90o. Le travail de l'ingénieur consistera à choisir le drapage optimisé permettant de résister aux sollicitations extérieures. C'est cette optimisation du drapage qui permettra d'obtenir des structures présentant un rapport performance/masse élevé.

Cet article a donc pour objectif de présenter un socle commun de connaissances des structures composites stratifiées qui doit permettre de comprendre les particularités de leur comportement. Il présente aussi les méthodes de prédimensionnement les plus classiques des jonctions et en flambement.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

laminates   |   manufacturing   |   sizing   |   transportation   |   leisure

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-bm5080


Cet article fait partie de l’offre

Conception et Production

(139 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

4. Plaques multicouches

4.1 Présentation

  • Structures minces

    En superposant des couches dans lesquelles les fibres sont orientées suivant des directions préférentielles, il est possible de résister à des efforts complexes dans le plan. Par contre, des efforts s'exerçant perpendiculairement au plan des fibres ne peuvent être repris que par la matrice (on ne considère pas ici les composites avec des renforts transverses tels que des clous ou des coutures). Les structures pour lesquelles l'emploi des composites est très intéressant sont les structures minces (l'épaisseur est faible devant les dimensions caractéristiques de la structure).

    Les exemples les plus courants sont les plaques, les coques minces, les poutres à section mince (tube, section en I, en L, etc.). Toutes ces structures peuvent être considérées comme un assemblage de plaques. Il est ainsi possible de calculer les efforts s'exerçant sur chaque élément. Il faut ensuite, à partir de ces efforts globaux, déterminer les contraintes dans chaque couche pour connaître la résistance et la rigidité de la structure.

    • Orientation des fibres

      Les résultats du paragraphe 3.2 montrent que des fibres unidirectionnelles noyées dans une matrice ne présentent une résistance importante qu'à des efforts de traction ou de compression dans le sens des fibres. Lorsqu'il s'exerce dans le plan des efforts suivant plusieurs directions, il est nécessaire de disposer les fibres suivant plusieurs orientations.

      Considérons le cas général où s'exercent des contraintes normales σ x et σ y et des contraintes de cisaillement τ xy  .

      Pour résister aux contraintes normales σ x et σ y  , il convient d'orienter les fibres dans les directions Ox, Oy (figure 14 a et b  ).

      La contrainte de cisaillement τ xy (τ xy = a )...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conception et Production

(139 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Plaques multicouches
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BARRAU (J.-J.), LAROZE (S.) -   Calcul des structures en matériaux composites.  -  Eyrolles et Masson (1987).

  • (2) - GAY (D. ) -   Matériaux composites.  -  Hermes/lavoisier (2005).

  • (3) - BERTHELOT (J.M.) -   Matériaux composites : comportement mécanique et analyse des structures.  -  Éditions Technique et documentation (1999).

  • (4) - KASSAPOGLOU (C.) -   Design and analysis of composite structures.  -  Wiley (2010).

  • (5) - NIU (M.C.Y.) -   Composite airframe structures.  -  Hong-Kong Conmilit Press LTD (1992).

  • (6) - ZAGAINOV (G.I.), LOZINO-LOZINSKY (G.E.) -   Composite materials in aerospace design.  -  Chapman et Hall (1995).

  • ...

1 Revues scientifiques

Composite Sciences and Technolology (Elsevier)

Composite Part A (Elsevier)

Composite Part B (Elsevier)

Composite Structures (Elsevier)

Applied Composite Materials (Springer)

Journal of Composite Materials (Sage Publications)

HAUT DE PAGE

2 Événements

Salon : JEC Composites http://www.jeccomposites.com

Congrés : Journées Nationales sur les Composites, tous les 2 ans, AMAC, http://www.amac-composites.org/

International Conference on Composite Structures, ICCS Porto, tous les 2 ans

International Conference on Composite Materials, ICCM, tous les 2 ans, http://www.iccm-central.org/

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conception et Production

(139 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS