Présentation
RÉSUMÉ
Certains organismes photosynthétiques sont capables de capturer le CO2 atmosphérique et de produire une biomasse riche en huile. Cette huile est considérée, de ce fait, comme une ressource renouvelable qui pourrait devenir une alternative aux hydrocarbures fossiles. Cet article fournit une définition détaillée de ce que l'on entend par microalgue, huile, biocarburant, et donne un état de l'art des technologies de culture, de récolte, d'extraction d'huile et de conversion en biodiesel, du laboratoire à l'échelle pilote, soulignant les verrous biotechnologiques et technologiques à lever dans l'avenir.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Some photosynthetic organisms can capture atmospheric CO2 and produce a biomass, with high levels of oil. This oil is therefore considered as a renewable resource, which could be an alternative to fossil hydrocarbons. This article provides a detailed definition of the terms microalgae, oil and biofuel, and gives a brief state of the art of technologies for cultivation, harvesting, oil extraction and conversion into biodiesel fuel, from laboratory to pilot scale, highlighting the biotechnological and technological challenges that will need to be addressed in the future.
Auteur(s)
-
Eric MARECHAL : Directeur de recherche CNRS, chef de l'équipe Homéostasie des glycérolipides Laboratoire de physiologie cellulaire et végétale, Institut de recherche en sciences et technologies pour le vivant, CEA Grenoble, France
INTRODUCTION
Certains organismes photosynthétiques sont capables de capturer le CO2 atmosphérique et de produire une biomasse riche en huile. Cette huile est considérée, de ce fait, comme une ressource renouvelable qui pourrait devenir une alternative aux hydrocarbures fossiles. Cet article fournit une définition détaillée de ce que l'on entend par microalgue, huile, biocarburant, et donne un état de l'art des technologies de culture, de récolte, d'extraction d'huile et de conversion en biodiesel, du laboratoire à l'échelle pilote, soulignant les verrous biotechnologiques et technologiques à lever dans l'avenir.
Some photosynthetic organisms can capture atmospheric CO2 and produce a biomass, with high levels of oil. This oil is therefore considered as a renewable resource, which could become an alternative to fossil hydrocarbons. This article provides a detailed definition of what is meant by microalgae, oil and biofuel, and gives a brief state of the art of technologies for cultivation, harvesting, oil extraction and conversion into biodiesel, from the laboratory to the pilot scale, highlighting the biotechnological and technological challenges which should be addressed in the future.
Biotechnologies, procédés d'extraction, biodiesel, biokérosène, culture des microalgues, extraction d'huile, biocarburant
Biotechnologies, extraction processes, biodiesel, jetfuel, microalgae cultivation, oil-extraction, biofuel
Domaine : Techniques de production et de transformation de microalgues
Degré de diffusion de la technologie : Émergence | Croissance | Maturité
Technologies impliquées : Génie génétique, biologie moléculaire, biotechnologies, culture de micro-organismes, extraction d'huiles
Domaines d'application : Biocarburants, bioénergie, biomolécules, chimie verte, lubrifiants, cosmétique, nutrition humaine et animale
Principaux acteurs français :
Pôles de compétitivité : Institut de biologie de l'École normale supérieure – Laboratoire de génomique des organismes photosynthétiques (IBENS Paris) ; Institut de biologie physico-chimique (IBPC Paris) ; Laboratoire de génie des procédés – environnement – agro-alimentaire (GEPEA Saint Nazaire) ; Laboratoire de bioénergétique et biotechnologie des bactéries et microalgues (LB3M – CEA Cadarache) ; Laboratoire de physiologie cellulaire & végétale (LPCV-CEA Grenoble) ; Université Pierre et Marie Curie – Laboratoire de génomique fonctionnelle des diatomées (UPMC Paris)
Centres de compétence : Mer Bretagne, Mer Méditerranée, Végépolys, Trimatec, Axelera
Industriels : Algenics's, Algosource Technologies, Algaestream, Alpha Biotech, Bioalgostral Océan, Fermentalg, Greensea, Innovalg, Microphyt, Phycosource, Roquette, Microphyt, Total Énergies Nouvelles
Autres acteurs dans le monde : DSM Nutritional-Martek, Lonza, Nisshin Oillio Group, Solazyme, Dow, Unilever
Contact : [email protected]
VERSIONS
- Version courante de févr. 2021 par Eric MARÉCHAL
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Archives > [Archives] Innovations technologiques > Carburants à base d'algues oléagineuses - Principes, filières, verrous > Questions biologiques et biotechnologiques
Accueil > Ressources documentaires > Archives > [Archives] Bioprocédés et bioproductions > Carburants à base d'algues oléagineuses - Principes, filières, verrous > Questions biologiques et biotechnologiques
Accueil > Ressources documentaires > Archives > [Archives] Éco-conception et innovation responsable > Carburants à base d'algues oléagineuses - Principes, filières, verrous > Questions biologiques et biotechnologiques
Cet article fait partie de l’offre
Chimie verte
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Questions biologiques et biotechnologiques
3.1 Manipulation au laboratoire
Les microalgues peuvent être manipulées dans un laboratoire classique de microbiologie disposant de systèmes de culture éclairés. Après leur collecte dans le milieu naturel, par exemple suite à des campagnes d'exploration océanique telles que la mission Tara Océan, la première tâche est de réussir à isoler une microalgue d'intérêt de tout contaminant, phase dite d'« axénisation », par des dilutions successives dans des milieux stériles, en présence d'antibiotiques, et en cherchant à démarrer une culture à partir de microalgues propres. Il existe plusieurs milieux de culture, dont une eau de mer artificielle, plus ou moins enrichis en nutriments, par exemple en phosphate, azote, ou même en matière organique comme source supplémentaire de carbone.
Exemple : préparation d'eau de mer artificielle (enriched artificial seawater – ESAW)
Ce protocole a été établi par le Canadian Center for the Culture of Microorganisms et est considéré comme une référence. Quatre solutions séparées sont préparées, deux solutions de sels (solutions 1 et 2, tableaux 2 et 3), une solution de nutriments et une solution de vitamines. Les sels sont ajoutés dans l'ordre dans de l'eau distillée stérile (EDS). Quand les sels sont complètement dissous, les solutions 1 et 2 sont mélangées. Toutes les solutions sont filtrées sur fibre de verre stérile de 0,45 μM de vide de maille. Les fioles sont lavées avec de l'acide chlorhydrique (10 % HCl) et rincées dans de l'EDS avant usage. Pour 1 L de solution filtrée de sels (solutions 1 + 2), 1 mL des solutions a, b, d, e et f et 2 mL de la solution c de nutriments sont ajoutés, ainsi que 2 mL de la solution stock de vitamines (tableaux 4 et 5). Afin de réduire les risques de précipitation pendant la stérilisation à l'autoclave, 1,44 mL d'HCl 1N et 0,12 g de bicarbonate de sodium sont ajoutés.
L'eau de mer artificielle ainsi obtenue est finalement stérilisée par autoclave.
La figure 10 montre les différentes échelles de culture qu'il est possible de mener en laboratoire. Un milieu est dit « solide »,...
Cet article fait partie de l’offre
Chimie verte
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Questions biologiques et biotechnologiques
BIBLIOGRAPHIE
-
(1) - PETROUTSOS (D.), AMIAR (S.), ABIDA (H.), DOLCH (L.-J.), BASTIEN (O.), REBEILLE (F.), JOUHET (J.), FALCONET (D.), BLOCK (M.A.), McFADDEN (G.I.), BOWLER (C.), BOTTE (C.), MARECHAL (E.) - Evolution of galactoglycerolipid biosynthetic pathways. From cyanobacteria to primary plastids and from primary to secondary plastids. - Progress in Lipid Research, 54, p. 68-85 (2014).
-
(2) - LEVITAN (O.), DINAMARCA (J.), HOCHMAN (G.), FALKOWSKI (P.G.) - Diatoms : a fossil fuel of the future. - Trends in Biotechnology, 32, p. 117-124 (2014).
-
(3) - BEISSON (F.), LI-BEISSON (Y.), PELTIER (G.), FINAZZI (G.), MARECHAL (E.), CHAUVAT (F.), DELRUE (F.), FROMENT (K.), BLET (V.) - Des microalgues pour la production des biocarburants. - Les clefs du CEA. Les énergies bas carbone, 61, p. 42-49 (2013).
-
(4) - CHISTI (Y.) - Biodiesel from microalgae. - Biotechnology Advances, 25, p. 294-306 (2007).
-
(5) - RAZZAK (S.A.), HOSSAIN (M.M.), LUCKY (R.A.), BASSI (A.), BASSI (S.), DE LASSA (H.) - Integrated CO2 capture, wastewater treatment and biofuel production...
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Chimie verte
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive