Présentation

Article

1 - BASES PHYSIOLOGIQUES ET THERMODYNAMIQUES DE LA PRODUCTION D'HYDROGÈNE PAR DIGESTION ANAÉROBIE ET « FERMENTATION SOMBRE »

2 - GISEMENTS DE MATIÈRES ORGANIQUES DE PRODUCTION DE BIOHYDROGÈNE

  • 2.1 - Substrats riches en sucres
  • 2.2 - Déchets agricoles

3 - ACTEURS MICROBIENS DE LA DIGESTION ANAÉROBIE

4 - PROCÉDÉS DE PRODUCTION DE BIOHYDROGÈNE

5 - MODÉLISATION DES PROCESSUS DE PRODUCTION ET DE CONSOMMATION D'HYDROGÈNE DE LA FERMENTATION SOMBRE

6 - EN GUISE DE CONCLUSION

| Réf : BIO3351 v1

Modélisation des processus de production et de consommation d'hydrogène de la fermentation sombre
Production de biohydrogène : voie fermentaire sombre

Auteur(s) : Éric LATRILLE, Éric trably, Christian LARROCHE

Date de publication : 10 mai 2011

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Le présent article passe en revue les principes et les performances actuelles des procédés de production d'hydrogène par la voie microbiologique dite "sombre". Les techniques de conduite et de caractérisation de fermentation impliquant des cultures complexes sont plus particulièrement détaillées. Les dernières avancées de la recherche ainsi que les réalisations actuelles en termes de développement et de changement d’échelle sont également présentées. A ce stade des connaissances, quelques perspectives sont proposées, dont les différentes configurations possibles de systèmes multiétagés pour une valorisation optimale des matières organiques.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Biohydrogen production by dark fermentation

This article reviews the main principles and latest achievements of hydrogen production in dark fermentation processes. The methods for characterizing and monitoring strict anaerobic fermentation processes are discussed, in particular with mixed cultures. The main achievements in both research and development for technical scale-up are also described. Future perspectives are finally considered, including the possibilities of multi-step systems for optimal conversion of organic materials.

Auteur(s)

  • Éric LATRILLE : Ingénieur de recherche au laboratoire de Biotechnologies de l'Environnement (UR050 – INRA-LBE Narbonne) - Ingénieur de l'École centrale de Lyon - Docteur en génie des procédés de l'Institut national agronomique Paris-Grignon (INA P-G, AgroParisTech)

  • Éric trably : Ingénieur de recherche et directeur adjoint au laboratoire de Biotechnologies de l'Environnement (UR050 – INRA-LBE Narbonne) - Ingénieur de l'Institut national des sciences appliquées de Toulouse (INSA) - Docteur en génie des procédés de l'université Montpellier

  • Christian LARROCHE : Professeur à Polytech Clermont-Ferrand, laboratoire de Génie chimique et biochimique – université Blaise Pascal - Ingénieur de l'Institut national des sciences appliquées de Toulouse (INSA) - Docteur d'état en génie des procédés de l'université Blaise Pascal (Clermont-Ferrand)

INTRODUCTION

Dans le monde du vivant, l'hydrogène est principalement un intermédiaire biochimique hautement réactionnel qui assure le transfert efficace d'électrons entre espèces microbiennes jouant le rôle de vecteur énergétique. Dans le monde industriel, la nature réactive de l'hydrogène fait qu'il est utilisé comme réactif dans de nombreux procédés de la chimie fine, de la pétrochimie et même de l'agroalimentaire ou comme carburant pour des applications en piles à combustible.

La fermentation orientée vers la production d'hydrogène est un procédé qui est apparu récemment dans le domaine des biotechnologies. Plutôt considérée comme un processus de dégradation indésirable de la matière organique générant des nuisances olfactives et des sous-produits sans grand intérêt, tels que l'acétate et le butyrate, elle est devenue attrayante par sa production d'hydrogène. D'un point de vue industriel, la filière de production d'hydrogène par fermentation sombre n'a pas encore un réel intérêt économique, mais le développement des industries de la filière du bioéthanol de seconde génération, transformant les plantes entières en sucres simples, fait naître de nouveaux espoirs via la valorisation des sous-produits de cette filière. En effet, la production d'hydrogène par fermentation s'applique à une large gamme de substrats organiques qu'il s'agisse d'hydrates de carbone purs ou non, de déchets organiques ou autres résidus agricoles. L'hydrogène ainsi produit serait de l'hydrogène « biosourcé » (ou biohydrogène).

Néanmoins, les limites à l'industrialisation de la production de dihydrogène par fermentation restent nombreuses. Les rendements moyens de conversion des hydrates de carbone, à l'échelle pilote, et dans de bonnes conditions de productivité, restent inférieurs à alors qu'il faudrait atteindre les pour obtenir une conversion totale, c'est-à-dire 1,6 L d'hydrogène par gramme de sucre. Afin d'améliorer les rendements de la filière, des couplages avec d'autres procédés biologiques ou chimiques doivent être considérés comme les photofermentations ou l'électrolyse microbienne (figure 1). Cette démarche intégrée est indispensable au succès d'une filière « biohydrogène », même si des difficultés de compatibilités des procédés apparaissent, soit par la présence de composés inhibiteurs, soit par des productivités très différentes conduisant à des dimensionnements délicats des installations. Cet article s'intéresse à la voie fermentaire sombre (étape 1 de la figure 1), les phases éclairées (étapes 2 et 3 de la figure 1) étant traitées dans un autre article [BIO 3 352].

Cet article aborde dans un premier temps les aspects théoriques de la production d'hydrogène par voie fermentaire sombre. La seconde partie est dédiée aux gisements de matière organique et à leur potentiel. Le troisième chapitre est consacré aux acteurs microbiens produisant de l'hydrogène, et une quatrième partie présente leur mise en œuvre en procédés. Enfin, des aspects de modélisation sont abordés.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

biohydrogen   |   waste treatment   |   dark fermentation   |   bioenergy   |   anaerobic processes

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-bio3351


Cet article fait partie de l’offre

Bioprocédés et bioproductions

(161 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

5. Modélisation des processus de production et de consommation d'hydrogène de la fermentation sombre

5.1 Modèles physiologiques

HAUT DE PAGE

5.1.1 Calcul de la productivité et des rendements

La détermination des performances d'une culture de production de l'hydrogène consiste à calculer sa productivité et ses rendements. La productivité est exprimée en litre ou en mole d'hydrogène produit par litre de culture et par unité de temps. Généralement, on utilise l'unité de LH2 · L–1 · h–1 ou de .

Les rendements concernent les rendements de conversion produit/substrat et produit/produit. Ainsi, suivant le type de substrat, les rendements sont exprimés en mole d'hydrogène par mole d'hexose consommé ou introduit , en litre d'hydrogène par kg de sucre introduit ou en litre d'hydrogène par kg de matière organique sèche introduite.

L'efficacité des voies métaboliques se détermine par le ratio (Bu/Ac) des concentrations en butyrate et en acétate produits exprimées en mol · mol–1 et par le ratio H2/[2 × (Bu + Ac)] de la quantité d'hydrogène produit et de deux fois la somme de la quantité de butyrate et d'acétate produits exprimé en mol · mol–1. Ce dernier ratio est compris entre 0 et 1. Une valeur égale à 1 indique que l'hydrogène est entièrement produit par les voies de l'acétate et du butyrate et qu'il n'est pas consommé par homoacétogénèse.

Dans le cas de cultures discontinues, où le substrat introduit initialement est complètement dégradé, les calculs de productivité nécessitent souvent un ajustement de courbe aux quantités d'hydrogène dégagé afin de déterminer la vitesse de production. Le type de courbe d'ajustement le plus rencontré est la courbe de Gompertz modifiée...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Bioprocédés et bioproductions

(161 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Modélisation des processus de production et de consommation d'hydrogène de la fermentation sombre
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - LI (C.), FANG (H.H.P.) -   Fermentative hydrogen production from wastewater and solid wastes by mixed cultures.  -  Crit. Rev. Environ. Sci. Technol., 37, p. 1-39 (2007).

  • (2) - GUO (X.M.), TRABLY (É.), LATRILLE (É.) et al -   Hydrogen production from agricultural waste by dark fermentation : A review.  -  Int. J. Hydrogen Energy, 35, p. 10660-10673 (2010).

  • (3) - RODRIGUEZ (J.), KLEEREBEZEM (R.), LEMA (J.M.) et al -   Modeling product formation in anaerobic mixed culture fermentations.  -  Biotechnol. Bioeng., 93, p. 592-606 (2006).

  • (4) - HAWKES (F.), HUSSY (I.), KYAZZE (G.) et al -   Continuous dark fermentative hydrogen production by mesophilic microflora : principles and progress.  -  Int. J. Hydrogen Energy, 32, p. 172-184 (2007).

  • (5) - THAUER (R.K.), JUNGERMANN (K.), DECKER (K.) -   Energy conservation in chemotrophic anaerobic bacteria.  -  Bacteriol. Rev., 41, p. 100-180 (1977).

  • ...

1 Outils logiciels

Aquasim 2.0. Swiss Federal Institute for Environmental Science and Technology (EAWAG) http://www.eawag.ch/organisation/abteilungen/siam/software/aquasim/program_description

SIMBA (ifak system) : simulation d'installations de traitement des eaux usées incluant les digesteurs de boues activées http://www.ifak-system.com/products/simulation-software/wastewatersimulation/simba-6.html

HAUT DE PAGE

2 Sites Internet

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Bioprocédés et bioproductions

(161 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS