Présentation

Article

1 - ESTIMATION DE L'INFLUENCE DES ERREURS D'ARRONDI ET DES INCERTITUDES DES DONNÉES

  • 1.1 - Analyse des erreurs d'arrondi dues à l'arithmétique à virgule flottante
  • 1.2 - Propagation des erreurs d'arrondi dans un programme de calcul scientifique
  • 1.3 - Influence des incertitudes des données sur les résultats d'un programme de calculs

2 - APPROCHE STOCHASTIQUE DE L'ANALYSE DES ERREURS D'ARRONDI : MÉTHODE CESTAC

  • 2.1 - Base de la méthode CESTAC
  • 2.2 - Mode d'arrondi aléatoire
  • 2.3 - Modélisation
  • 2.4 - Validation
  • 2.5 - Implémentation synchrone

3 - ARITHMÉTIQUE STOCHASTIQUE

  • 3.1 - Arithmétique stochastique continue
  • 3.2 - Arithmétique stochastique discrète

4 - LOGICIEL CADNA

  • 4.1 - Introduction
  • 4.2 - Mise en œuvre du logiciel

5 - APPORT DU LOGICIEL CADNA AUX DIVERSES MÉTHODES DE CALCUL SCIENTIFIQUE

6 - EXEMPLES D'UTILISATION DU LOGICIEL CADNA

7 - CONCLUSION

Article de référence | Réf : AF1471 v1

Approche stochastique de l'analyse des erreurs d'arrondi : méthode CESTAC
Validation des résultats des logiciels scientifiques - Approche stochastique

Auteur(s) : Jean VIGNES, René ALT

Date de publication : 10 oct. 2009

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

La méthode CESTAC (Contrôle et estimation stochastique des arrondis de calculs) consiste à évaluer la fiabilité des résultats fournis par l'ordinateur. En effet, celui-ci réalise des calculs utilisant une représentation finie (nombres à virgules flottantes) des nombres réels, alors que ces nombres sont non finis. D'où résultats avec incertitudes, erreurs d'arrondis et risque d'invalidation. Cette méthode permet grâce à un procédé statistique dynamique, de déterminer le nombre de chiffres décimaux significatifs exacts dans les résultats fournis par un programme de calcul scientifique. Cet article décrit le principe de la méthode ainsi que des exemples d'utilisation du logiciel CADNA (logiciel permettant cette validation numérique).

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Jean VIGNES : Professeur émérite de l'université Pierre et Marie Curie

  • René ALT : Professeur émérite de l'université Pierre et Marie Curie

INTRODUCTION

Les chapitres suivants sont consacrés à l'approche stochastique de la propagation des erreurs d'arrondi et de l'influence des incertitudes des données sur les résultats fournis par un programme scientifique.

C'est la seule méthode permettant à chaque ingénieur de répondre à la question posée précédemment qui en substance est : « Quel est le nombre de chiffres décimaux significatifs exacts dans les résultats fournis par un programme de calcul scientifique ? »

Ainsi, la méthode CESTAC (Contrôle et estimation stochastique des arrondis de calculs) est détaillée au chapitre 2, puis l'arithmétique stochastique est présentée au chapitre 3.

Le chapitre 4 est consacré à la description et à l'utilisation du logiciel CADNA (« Control of Accuracy and Debugging of Numerical Algorithms »). Ce logiciel met en œuvre la méthode CESTAC et l'arithmétique stochastique discrète.

Les chapitres 5 et 6 sont dédiés à l'apport du logiciel CADNA aux diverses méthodes de calcul numérique (directes, itératives et approchées) et à des exemples d'utilisation de ce logiciel. La conclusion constitue le chapitre 7.

Toute l'introduction de ces questions est faite dans le dossier [AF 1 470], la documentation est regroupée dans [Doc. AF 1 470].

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af1471


Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

2. Approche stochastique de l'analyse des erreurs d'arrondi : méthode CESTAC

Les méthodes présentées précédemment permettent d'estimer des bornes majorantes de la propagation des erreurs d'arrondi ou des intervalles dans lequel se trouve la solution exacte du problème étudié, et d'estimer la stabilité des algorithmes utilisés.

Depuis l'arrivée d'ordinateurs pouvant exécuter des milliards d'opérations à la seconde, les utilisateurs prennent conscience de la nécessité de connaître la fiabilité des résultats fournis par l'ordinateur après plusieurs heures de calculs arithmétiques exécutés avec l'arithmétique en virgule flottante et, souvent, avec des données entachées d'incertitudes. Seule l'approche stochastique est capable de fournir une réponse.

L'idée de base de l'approche stochastique est que, au cours de l'exécution d'un programme de calcul, certaines erreurs d'arrondi peuvent se compenser. Comme on ne peut pas maîtriser les erreurs d'arrondi αi , puisqu'elles disparaissent en cours des calculs, on les considère comme des variables aléatoires uniformes équi-distribuées.

Les intervalles de variation des αi dépendent du mode d'arrondi utilisé et sont donnés par . En effet, la loi de distribution de ces variables aléatoires a fait l'objet d'étude. Dans [28] et [29], il a été montré que la distribution la plus plausible pour les mantisses est une distribution logarithmique. Sous cette hypothèse, il est démontré dans [30] que les αi au pième bit pouvaient être considérées avec une très bonne approximation, comme des variables aléatoires uniformes sur leur intervalle de définition dès que p > 10....

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Approche stochastique de l'analyse des erreurs d'arrondi : méthode CESTAC
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BREZINSKI (C.) -   Méthodes numériques de base – Analyse numérique.  -  [AF 1 220] (2006).

  • (2) - LA PORTE (M.), VIGNES (J.) -   Algorithmes numériques, analyse et mise en œuvre.  -  Éds Technip, Paris, vol.1 et 2 (1974 et 1980).

  • (3) - PICHAT (M.), VIGNES (J.) -   Ingénierie du contrôle de la précision des calculs sur ordinateur.  -  Éd. Technip, Paris (1993).

  • (4) - MULLER (J.M.) -   L'arithmétique des ordinateurs,  -  Masson, 1989.

  • (5) - GAO/Imtec-92-26 -   Patriot missile Defense.  -  Software problems led to failure at Dahran Arabia (1992).

  • (6) - RUMP (S.M.) -   How reliable are results of computers ?  -  Jahrbuch Uberliche Mathematik (1983).

  • ...

NORMES

  • Floating-point arithmetic - IEEE 754 - 01-08

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS