Présentation

Article

1 - MESURE DES PRESSIONS INSTATIONNAIRES EN MILIEU GAZEUX PAR LA VOIE OPTIQUE

2 - MESURE DE PRESSIONS INSTATIONNAIRES PAR CAPTEURS

3 - CAPTEURS À MEMBRANE

4 - CAPTEURS À ÉLÉMENT SENSIBLE

5 - ÉTALONNAGE DYNAMIQUE DES CAPTEURS

Article de référence | Réf : R2090 v2

Mesure de pressions instationnaires par capteurs
Pressions rapidement variables

Auteur(s) : Jean-Claude GODEFROY

Relu et validé le 01 mars 2019

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Jean-Claude GODEFROY : Ancien Chef de Subdivision, Direction de la Physique à l’ONERA L’auteur étant décédé avant l’impression de l’article, les épreuves ont été relues par Pierre TOUBOUL - Directeur du Département Mesures Physiques (DMPH) à l’ONERA

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

La nécessité de détecter des pressions rapidement variables est sans doute apparue au moment de la naissance de la téléphonie et, presque aussitôt, leur mesure s’est imposée pour la mise au point des premières machines thermiques. Les capteurs étudiés et développés pour la téléphonie étaient déjà des transducteurs de pression. Au fil du temps, la mesure des pressions rapidement variables (ou instationnaires) s’est étendue aux trois domaines : gaz, liquides et solides.

Il n’existe pas de frontière précise permettant de définir où s’arrêtent les pressions lentement variables et où commencent les pressions rapidement variables ; cependant il est admis que les phénomènes périodiques ayant une fréquence supérieure à quelques hertz peuvent déjà être considérés comme rapidement variables.

  • Les quelques exemples qui suivent illustrent le besoin constamment croissant d’augmenter la connaissance des fluctuations de pression.

  • Pour les gaz on peut citer :

    • en acoustique, la prise de son, l’étude des nuisances dues au bruit ;

    • en thermodynamique, l’étude des moteurs à explosion ou à combustion et des turbomachines ;

    • en aérodynamique, l’étude des phénomènes donnant naissance à des vibrations de structure ou des instabilités en mécanique du vol ;

    • en détonique, l’étude des explosifs.

  • Pour les liquides on citera :

    • en acoustique sous-marine, le sonar ;

    • en hydraulique, l’étude de la cavitation des hélices, l’étude des phénomènes transitoires dans les conduites d’eau ou de pétrole.

  • Pour les solides on peut citer l’étude des phénomènes transitoires créés par le passage des véhicules dans le sous-œuvre des routes, sur les supports des rails de chemin de fer et sur les appuis des ouvrages d’art.

On voit que la plupart des besoins se situent dans le domaine des fluides.

  • Actuellement, les mesures de pression sont le plus souvent effectuées à la paroi, en un point, et ne donnent que peu d’informations sur l’écoulement du fluide. Le souhait actuel est de pouvoir explorer l’écoulement sans le perturber.

Pour ce qui concerne l’écoulement lui-même, des moyens optiques, qui sont encore plus proches du laboratoire que du domaine industriel, sont en cours de développement pour l’analyse des trajectoires, des vitesses, des pressions et des températures qui caractérisent l’écoulement du fluide.

À la paroi, des peintures piézosensibles, permettent une vue d’ensemble des phénomènes. De telles peintures présentent, lorsqu’elles sont illuminées par un laser, un rendement de fluorescence qui est fonction de la pression d’oxygène.

Ces moyens, associés aux capteurs qui jouent le rôle de référence, concourent à la validation des modèles informatiques qui, à terme, contiendront l’ensemble des connaissances acquises.

  • Après un aperçu des possibilités offertes par les dispositifs optiques et du type de résultats obtenus, le présent article met l’accent sur la spécificité des capteurs de pression instationnaire (par rapport aux capteurs statiques) et sur le problème de leur étalonnage.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-r2090


Cet article fait partie de l’offre

Mesures physiques

(119 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

2. Mesure de pressions instationnaires par capteurs

  • Les capteurs destinés à la mesure des pressions rapidement variables peuvent être classés en deux groupes :

    • les capteurs à membrane 3 ;

    • les capteurs à élément sensible 4.

  • Dans les capteurs du premier groupe, le terme « membrane » est utilisé dans un sens très large, de manière à regrouper tous les capteurs constitués d’un corps d’épreuve sur lequel agit la pression et dont on mesure la déformation ; ce corps d’épreuve est, dans la majorité des cas, une membrane.

Les divers types de capteurs de ce groupe se distinguent donc entre eux essentiellement par les moyens utilisés pour mesurer la déformation traduisant la pression appliquée. Ce groupe comprend :

  • les capteurs à jauges extensométriques ;

  • les capteurs capacitifs passifs ou actifs ;

  • les capteurs à fibres optiques ;

  • les capteurs à réluctance variable ;

  • les capteurs à courants de Foucault.

Cette liste est, dans le cadre de cet article, volontairement limitée, mais représente la majeure partie des types employés de nos jours.

  • Dans les capteurs du second groupe, une propriété physique (autre que la déformation) de l’élément sensible varie sous l’effet de la pression que subit cet élément du fait de son élasticité....

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures physiques

(119 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Mesure de pressions instationnaires par capteurs
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BOUTIER (A.), ROYER (H.) -   Visualisations et mesures optiques en aérodynamique  -  . Techniques de l’Ingénieur. Traité Mesures et Contrôle. R 2 160, 1998.

  • (2) - MILES (R.), LEMPERT (W.) -   Two-dimensional measurement of density, velocity and temperature in turbulent high-speed air flows by UV Rayleigh scattering  -  . Appl. Phys. B 51, 1-7, 1990.

  • (3) - ATTAL (B.), DRUET (S.), BAILLY (R.), PEALAT (M.), TARAN (J.-P.) -   Techniques Raman d’études des écoulements et des flammes par Laser  -  . Spectra 2000. Vol. 7, n 54, 11-1979.

  • (4) - DRUET (S.), TARAN (J.-P.) -   Cars spectroscopy  -  . Progress in Quantum Electronics, vol. 7, no 1, 1981, p. 1-72.

  • (5) - GRISCH (F.), THURBER (M.C.), HANSON (R.K.) -   Mesure de Température par fluorescence induite par laser sur la molécule d’acétone  -  . Revue scientifique et technique de la défense, 1997, vol. 4, p. 51-60.

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures physiques

(119 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS