Présentation

Article

1 - FORMULATION DU PROBLÈME

2 - PROBLÈME DE TRANSFERT

3 - MÉTHODE DE RÉSOLUTION

4 - EXEMPLE D'APPLICATION

5 - CONCLUSION

6 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : TRP4066 v1

Exemple d'application
Trajectoires spatiales - Nettoyage des débris spatiaux

Auteur(s) : Max CERF

Date de publication : 10 avr. 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

La stabilisation du nombre de débris spatiaux nécessite le respect scrupuleux de la réglementation des règles de mitigation et le retrait d’une dizaine de gros débris par an. Les missions de nettoyage consistent à lancer une série de véhicules destinés à capturer et désorbiter des débris sélectionnés. La planification de ces missions conduit à un problème de voyageur de commerce dépendant du temps incluant l’optimisation des transferts orbitaux entre débris successifs. Ce problème est traité par une procédure en trois étapes, utilisant une stratégie de transfert adaptée aux poussées fortes ou faibles et une méthode de recuit simulé pour l’optimisation du chemin. Cette procédure est illustrée sur un exemple de planification de 3 missions.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Space Trajectories. Space Debris Cleaning

Stabilizing the number of space debris requires strict compliance with mitigation regulations and the removal of about ten large debris per year.. Cleaning missions consist of launching a series of vehicles to capture and deorbit selected debris. The planning of these missions leads to a time-dependent travelling salesman problem including the optimization of orbital transfers between successive debris. This problem is treated by a three-step procedure, using a transfer strategy adapted to high or low thrust and a simulated annealing method for the path optimization. This procedure is illustrated on an example for planning 3 successive missions.

Auteur(s)

  • Max CERF : Ingénieur en analyse de mission - ArianeGroup, Les Mureaux, France

INTRODUCTION

L'espace proche de la Terre est peuplé par des milliers de débris de toutes tailles. Les estimations donnent environ un million d’objets de taille 1 à 10 cm et 36 000 objets de taille supérieure à 10 cm. Ces objets circulant à la vitesse orbitale (7 à 8 km/s) représentent un danger constant pour les satellites opérationnels et la station spatiale. Ils requièrent un suivi quotidien et une trajectographie précise afin d’anticiper les risques de collision, et le cas échéant de réaliser des manœuvres d’évitement.

Les débris proviennent des anciens satellites et étages de lanceurs abandonnés en orbite depuis le début de l'ère spatiale. L’érosion de ces véhicules (principalement par chocs avec des particules) génère constamment de nouveaux débris, eux-mêmes sources de nouvelles collisions. Pour enrayer cette croissance exponentielle appelée syndrome de Kessler, il faut éviter d’abandonner de nouveaux véhicules en orbite et également éliminer les plus gros débris actuels. Plusieurs études ont conduit à la conclusion que l’élimination d’au moins cinq gros débris par an (anciens satellites ou étages de lanceurs), en plus d’un respect scrupuleux de la réglementation, est nécessaire pour au mieux stabiliser la population de débris et ne pas compromettre l’utilisation de l’espace dans les décennies à venir.

Une région particulièrement critique est celle des orbites héliosynchrones (SSO) et des orbites polaires terrestres (PEO) dans la plage d'altitude de 700 à 900 km. Ces orbites bien adaptées à l'observation de la Terre concentrent un grand nombre de satellites et par conséquent de débris.

Le programme de nettoyage consiste à lancer une série de véhicules dédiés, chacun étant chargé de capturer et désorbiter cinq débris sélectionnés. Le choix des débris conduit à un problème combinatoire de type voyageur de commerce. Ce problème intrinsèquement complexe comporte ici deux difficultés supplémentaires :

  • les orbites des débris varient sous l’effet de la précession, ce qui rend le problème combinatoire dépendant du temps ;

  • le coût des missions est celui des transferts orbitaux entre les débris sélectionnés, ce qui nécessite de résoudre une suite de problèmes de contrôle optimal.

Cet article traite le problème de planification des missions de nettoyage. L’objectif est que celles-ci puissent être effectuées par des véhicules identiques les moins coûteux possible. Le problème d’optimisation est formulé dans la première partie, puis une stratégie de transfert adaptée aux cas à poussée forte ou faible est définie dans la deuxième partie. La troisième partie décrit une procédure d’optimisation en trois étapes, basée sur la méthode du recuit simulé. La méthode présentée permet d’optimiser les missions en tenant compte de la stratégie de désorbitation (par le véhicule ou des kits autonomes) et des priorités affectées aux débris. Un exemple d’application est détaillé dans la quatrième partie, dans les cas à poussée forte ou faible. Cet exemple volontairement simplifié suppose que tous les débris ont la même priorité et ne traite que du cas d’une désorbitation par des kits autonomes. Il a pour but d’illustrer l’optimalité de l’ordre de ramassage vis-à-vis des coûts de transferts.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

simulated annealing   |   orbital transfer   |   high thrust   |   low thrust   |   traveling salesman problem

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-trp4066


Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(66 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

4. Exemple d'application

On considère une liste de 21 débris sur des orbites circulaires à des altitudes entre 700 et 900 km, des inclinaisons entre 97 et 99 degrés, et des RAAN initiaux entre 0 et 360 degrés. Les altitudes, inclinaisons et RAAN initiaux sont uniformément répartis dans leurs intervalles respectifs. Le tableau 1 donne les paramètres orbitaux des débris, avec leur vitesse de précession nodale dans la dernière colonne.

L’objectif est de planifier trois missions successives désorbitant 5 débris chacune, tout en minimisant l'impulsion ΔV de la mission la plus coûteuse. La durée totale est limitée à 45 mois, soit une moyenne de 3 mois par transfert. Une durée forfaitaire de 5 jours entre chaque transfert est allouée pour les opérations de capture et désorbitation des débris. L’altitude des orbites de dérive est bornée entre 400 et 2 000 km. On suppose ici que les débris ont les mêmes poids et les mêmes coûts de désorbitation. Cet exemple théorique est volontairement simplifié pour mettre en évidence l’optimalité de la solution trouvée en termes de répartition des débris entre les missions successives. Pour des applications réelles, on se base sur des listes de débris de référence et des critères de priorité agréés au niveau international.

La grille d’interpolation est construite avec un maillage comportant 16 dates initiales (entre 0 et 45 mois) et 6 durées de transfert (entre 20 et 200 jours). Ceci nécessite 16 x 6 x 20 x 21 = 40 320 optimisations de transferts élémentaires (environ 4 h de calcul). Le recuit simulé est appliqué en utilisant la grille d’interpolation des coûts pour trouver un planning de mission. Il converge en 10 minutes avec 200 millions d'essais. Les manœuvres sont ensuite affinées par une optimisation précise avec simulation de trajectoire. Les cas à poussée forte et faible sont successivement traités. Dans le cas à poussée faible, on considère une accélération moyenne de 3,5.10−3 m/s2 pour calculer les transferts d’Edelbaum.

4.1 Cas à poussée forte

Le tableau 2 montre un échantillonnage des itérations du recuit simulé, avec les numéros des...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(66 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Exemple d'application
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BETTS (J.T.) -   Practical Methods for Optimal Control and Estimation Using Nonlinear Programming.  -  SIAM (2010).

  • (2) - CERF (M.) -   Techniques d’optimisation 2.  -  EDP Sciences (2023).

  • (3) - CHOBOTOV (V.) -   Orbital Mechanics Third edition.  -  AIAA (2002).

  • (4) - CONWAY (B.A.) -   Spacecraft Trajectory Optimization.  -  Cambridge University Press (2010).

  • (5) - MINOUX (M.) -   Programmation mathématique.  -  Lavoisier (2008).

  • (6) - VALLADO (D.) -   Fundamentals of Astrodynamics and Applications.  -  Microcosm Press, Springer (2007).

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(66 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS