- Article de bases documentaires
|- 10 sept. 2016
|- Réf : M7340
Cet article donne un aperçu général sur les procédés de fabrication du coke métallurgique pour le haut-fourneau. Après une rapide description des propriétés fondamentales des charbons et des mécanismes de transformation du charbon en coke, les éléments de technologie et d’exploitation des fours à coke classiques sont présentés en détail. Les facteurs de production du coke et leur influence sur la qualité du coke sont ensuite passés en revue. Des exemples types de bilans matières et de bilans thermiques des fours à coke sont proposés. Pour terminer, des aspects complémentaires sont abordés sur les procédés de fabrication du coke non conventionnels faisant appel à des technologies différentes des cokeries classiques.
- Article de bases documentaires
|- 10 sept. 2016
|- Réf : M7341
Cet article décrit les rôles fondamentaux du coke dans le haut-fourneau : support mécanique de la charge, agent de perméabilité, régénérateur du gaz réducteur CO et production d’énergie aux tuyères. La résistance mécanique est l’un des rôles prépondérants. Les mécanismes de dégradation mécanique du coke sont présentés ainsi que leurs conséquences sur la marche du haut fourneau. L’importance de la stabilisation mécanique du coke entre la cokerie et le haut fourneau est également largement décrite. La gazéification partielle du coke par le CO2 (qui consomme 35 à 40 % du coke chargé) fait l’objet d’un essai normalisé (test CSR) décrit dans l’article. L’importance de l’indice CSR du coke sur la marche du haut fourneau est mise en évidence sur des données de marche de hauts fourneaux.
- ARTICLE INTERACTIF
|- 10 déc. 2018
|- Réf : M7402
Le haut fourneau constitue actuellement l'outil de base de la filière de production des aciers à forte valeur ajoutée. Son fonctionnement est maintenant bien connu et la technologie a atteint un haut niveau de maturité. Cet article traite des principes généraux de fonctionnement du haut fourneau et aborde les points suivants : le schéma global de fonctionnement, monodimensionnel puis bidimensionnel, sa modélisation thermochimique par bilan étagé, le fonctionnement de la zone des tuyères, notamment l'injection de charbon, le fonctionnement du creuset ainsi que sa vidange. Enfin sont présentés les modèles numériques décrivant le haut fourneau dans sa globalité.
- Article de bases documentaires : FICHE PRATIQUE
- |
- 08 déc. 2022
- |
- Réf : 1802
Les besoins en énergie thermique répondent aux exigences des procédés divers : séchage, concentration ou distillation, chauffage et apport thermique aux réacteurs chimiques. Ces besoins sont couverts pour 60 % par des combustibles fossiles (gaz, fioul, charbon), 30 % par l’énergie électrique et le reliquat pas des ressources diverses (renouvelables, biomasse…).
Au cours de ces processus, des quantités importantes de chaleurs sont libérées à plus bas niveau de température. Une part de cette chaleur est directement valorisée en étant réinjectée dans le procédé ou pour permettre un préchauffage des flux entrants ; une autre part est rejetée à l’atmosphère sans valorisation.
Pour valoriser ces pertes nettes, notamment en dessous de 200 °C, différentes technologies de valorisation énergétique sont envisageables. Au-delà de 200 °C, peu de technologies de valorisation sont disponibles, si ce n’est les récupérateurs thermiques.
Cette fiche doit vous permettre d’identifier les solutions techniques de valorisation.
Comprendre les implications concrètes de la transition énergétique, et bâtir une stratégie d’entreprise à la hauteur de ces enjeux.
- Article de bases documentaires : FICHE PRATIQUE
- |
- 07 nov. 2023
- |
- Réf : 1817
La consommation d’énergie primaire de la France s’élève à 2 571 TWh en 2020 (en données non corrigées des variations climatiques). Le bouquet énergétique primaire réel de la France se compose de 40 % de nucléaire, 28 % de pétrole, 16 % de gaz naturel, 14 % d’énergies renouvelables et déchets et 2 % de charbon. À l’exception des énergies hydraulique, photovoltaïque et éolienne (qui représentent à elles trois une somme de 117 TWh), les énergies primaires sont dans un premier temps transformées en énergie thermique puis pour certaines en énergie mécanique et électrique. L’énergie finale alors consommée pour les usages du bâtiment, des transports et de l’industrie, est évaluée à près de 1 600 TWh annuels (année 2020).
Dans cette fiche, nous nous limitons aux usages thermiques strictement industriels (hors production d’électricité) pour les utilités et les procédés de transformation industrielle par l’intermédiaire de chaudières ou de fours.
Comprendre les implications concrètes de la transition énergétique, et bâtir une stratégie d’entreprise à la hauteur de ces enjeux.