- Article de bases documentaires
|- 10 déc. 2022
|- Réf : AF1404
La résolution des équations de Navier-Stokes par différences finies est présentée. Divers concepts sont présentés ainsi que le modèle mathématique régissant le comportement d’un fluide ; des cas particuliers de formulation des équations de Navier-Stokes sont indiqués. On considère deux formulations distinctes pour résoudre le problème cible ; d’une part la formulation courant-vorticité pour calculer un écoulement 2D où on a à résoudre simplement une équation de Poisson couplée à une équation de convection-diffusion. Une autre méthode permet aussi de résoudre les équations cibles formulées en vitesse-pression. Dans les deux cas l’analyse numérique des algorithmes est présentée. La dernière partie présente la résolution des équations de Navier-Stokes en régime turbulent.
- Article de bases documentaires
|- 10 déc. 2022
|- Réf : AF1406
On utilise la méthode des volumes finis pour résoudre les équations de Navier-Stokes. L’article comprend deux parties distinctes. La première présente la méthode de discrétisation pour résoudre les problèmes de diffusion et de convection-diffusion 1D, 2D et 3D sur des maillages structurés ou non ainsi que la semi-discrétisation en temps pour ensuite aboutir à des schémas explicites et implicites en temps pour résoudre l’équation de la chaleur. La seconde partie présente la résolution des équations cibles par la méthode des volumes finis. En fait cela revient à résoudre des équations de diffusions couplées à des équations de convection-diffusion ; en utilisant les résultats de la première partie, on présente et on compare entre eux divers algorithmes de résolution.
- Article de bases documentaires
|- 10 déc. 2022
|- Réf : AF1407
La méthode des éléments finis est utilisée pour résoudre les équations de Navier-Stokes. Cette méthode est très bien adaptée à l’approximation des équations régissant le comportement de fluides et permet aussi de fournir une approximation des domaines de définition des équations à résoudre, en particulier pour la prise en compte de frontières courbes. La résolution de ces équations avec diverses conditions aux limites et avec divers éléments finis admissibles est présentée. Des résultats de majoration d’erreur sont indiqués. Plusieurs méthodes diverses de résolution des systèmes discrétisés sont présentées. Enfin quelques applications ainsi que des codes d’éléments finis comparés à ceux en volumes finis sont indiqués et permettent de dégager des critères de choix de codes industriels.