Présentation
EnglishRÉSUMÉ
Le traitement du signal est une discipline très vaste qui consiste à développer des méthodes d'analyse , d'interprétation et de transformation de signaux. Tout support d'informations comme une suite de nombres, une image, une séquence ADN… peut être défini comme un signal. Il est soit analogique, c'est-à-dire le résultat d'un processus de mesure (physique ou autre), soit numérique, lorsqu'il est stocké sur un support numérique quelconque. Dans les deux cas, son traitement recouvre un grand nombre de problématiques, de l'analyse exploratoire au débruitage, en passant par la restauration, le codage et la compression, sans oublier l'échantillonnage. Les signaux peuvent être décrits comme des objets déterministes ou aléatoires, l'approche à l'aide de modèles probabilistes apporte alors de précieux renseignements.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Bruno TORRÉSANI : Professeur de mathématiques à Aix-Marseille Université, - Laboratoire d'Analyse, Topologie et Probabilités, - Centre de Mathématique et d'Informatique
INTRODUCTION
Le traitement du signal est la discipline qui consiste à développer et étudier des méthodes d'analyse, d'interprétation et de transformation des signaux, un signal pouvant être défini comme un support d'information à peu près quelconque (comme par exemple une suite de nombres, un courant électrique, une séquence ADN, ou encore une image ou une séquence vidéo…). Le traitement du signal fait appel à de nombreuses branches des mathématiques appliquées (notamment l'analyse, la théorie de l'approximation, les probabilités et statistiques, la théorie de l'information…) et maintenant même des mathématiques pures (géométrie, théorie des nombres…). Les signaux se présentent essentiellement sous deux formes : les signaux analogiques qui sont le résultat d'un processus de mesure physique (ou autre), ou obtenus par « conversion numérique analogique », et les signaux numériques stockés sur ordinateur ou un support numérique quelconque, ou produits par une « conversion analogique numérique ». Cette dernière opération, qui est l'une des plus fondamentales des opérations du traitement du signal, porte également le nom d'échantillonnage.
Le traitement du signal recouvre un grand nombre de problématiques, qui vont de l'analyse exploratoire des signaux à des tâches plus complexes comme le débruitage et la restauration de signaux dégradés, le codage et la compression des signaux, images et vidéo, l'estimation de modèles et de paramètres, la détection d'évènements spécifiques dans les signaux et les images… De plus, le cadre applicatif dans lequel ces problèmes sont posés impose souvent de sévères contraintes (causalité, charge de calcul, format des signaux…) qui nécessitent une adaptation du traitement.
Ce dossier décrit un échantillon assez large de méthodes et algorithmes de traitement des signaux et des images, en insistant sur les fondements mathématiques et les algorithmes. La première partie se focalise sur le premier point essentiel, à savoir le problème de la représentation des signaux. Dans ce contexte, l'analyse de Fourier et plus généralement l'analyse mathématique jouent un rôle central. On y discute également l'un des outils essentiels du traitement du signal, à savoir le filtrage de convolution, ainsi que la problématique de l'échantillonnage. Les signaux pouvant être décrits comme des objets soit déterministes, soit aléatoires, un certain nombre de modèles probabilistes sont également discutés en détails, et les notions abordées dans le cadre déterministe sont revisitées dans le cadre des signaux aléatoires.
La deuxième partie de ce dossier est consacrée à quelques problèmes spécifiques d'analyse et traitement des signaux, qui sont traités en exploitant les outils mathématiques décrits dans la première partie. Plus spécifiquement, les problèmes d'analyse et estimation, de codage et compression, et de débruitage sont abordés. La dernière section est quant à elle consacrée à une courte discussion de développements très récents, basés sur un nouveau paradigme, la notion de parcimonie. Certains aspects plus mathématiques ou techniques sont développés dans des annexes.
Le traitement du signal étant une discipline extrêmement vaste, il était impossible d'en couvrir tous les aspects dans un article de ce format. Le lecteur intéressé à approfondir certains aspects peu (ou pas du tout) traités ici est invité à se référer à quelques ouvrages de référence tels que par exemple ou des documents disponibles en ligne (voir la rubrique Sites Internet du Pour en savoir plus).
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Sciences fondamentales > Mathématiques > Méthodes numériques > Méthodes mathématiques pour le traitement des signaux et des images > Exemple d'application : débruitage, problème inverse
Cet article fait partie de l’offre
Le traitement du signal et ses applications
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Exemple d'application : débruitage, problème inverse
Il arrive fréquemment (c'est même la situation la plus courante) que les signaux, acquis à l'issue de mesures physiques, soient corrompus par un bruit de mesure, et/ou modifiés par une réponse d'appareil. Les observations sont alors de la forme
où b est un bruit additif (inconnu) et Φ une transformation reflêtant la mesure. Φ est souvent modélisé par un opérateur linéaire. Le problème de débruitage suppose que Φ est l'identité, et on cherche alors à restaurer à partir de l'observation y un signal aussi proche que possible de x, en faisant des hypothèses sur le bruit b. Dans le problème inverse, Φ n'est plus supposé trivial, mais est généralement non inversible, ou son inversion pose problème, en particulier en présence de bruit.
5.1 Filtrage de Wiener
Le filtre de Wiener est une réponse au problème de débruitage et se base sur une modélisation aléatoire des signaux. On suppose données des observations bruitées
d'un signal d'intérêt X, et on fait les hypothèses suivantes :
1. X et B sont des signaux aléatoires du second ordre, stationnaires en moyenne quadratique. On suppose aussi pour simplifier que X et B sont centrés ;
2. les densités spectrales de X et B (voir (9)) sont connues et notées SX et SB ;
3. X et B sont décorrélés : ?xml>
Cet article fait partie de l’offre
Le traitement du signal et ses applications
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Exemple d'application : débruitage, problème inverse