Présentation
En anglaisAuteur(s)
-
Jacques PRADO : Maître de conférences à l’École nationale supérieure des télécommunications (ENST)
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Un filtre numérique peut, tout comme un filtre analogique, être composé d’éléments interconnectés, les éléments sont ici des registres à décalage, des multiplieurs, des additionneurs... Le caractère discret des opérations effectuées pour calculer le signal de sortie fait qu’il est également possible de le réaliser sous forme d’un programme ou microprogramme implanté sur un calculateur numérique au sens large du terme (circuit intégré spécialisé, processeur de traitement de signal, calculateur d’usage général...). L’analyse d’un filtre numérique consiste à déterminer la réponse à une excitation donnée. La conception est la procédure qui comprend la synthèse et la réalisation de telle sorte que le filtre obtenu réponde à des contraintes données (réponse en amplitude, en phase...). Pour des raisons de réalisabilité physique et d’utilisation en temps réel, les filtres considérés auront nécessairement une réponse impulsionnelle causale, ce qui signifie qu’un échantillon du signal de sortie est calculable à partir d’échantillons de l’entrée et/ou de la sortie ne dépendant que des instants du présent et/ou du passé, mais jamais du futur. Il est cependant possible de simuler une utilisation non causale moyennant un retard de traitement si l’application le permet. Nous ne nous intéresserons ici qu’aux filtres linéaires invariants.
Bien que la réponse en fréquence d’un filtre soit définie par un module et une phase, les méthodes de synthèse ne répondent en général qu’à l’une des deux contraintes. Soit la phase possède une propriété particulière (par exemple linéaire pour les filtres non récursifs) et l’on ne s’intéresse qu’à la contrainte sur le module, soit le module possède une propriété particulière (par exemple constant pour les filtres passe-tout) et l’on ne s’intéresse qu’à la contrainte sur la phase, soit dans la plupart des cas, on ne s’intéresse qu’au module et la phase résultante sera satisfaisante ou devra être corrigée à l’aide d’un filtre supplémentaire.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Électronique - Photonique > Électronique > Architecture et tests des circuits numériques > Filtres numériques - Synthèse > Synthèse des filtres non récursifs
Cet article fait partie de l’offre
Le traitement du signal et ses applications
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Synthèse des filtres non récursifs
En règle générale, on procède en quatre étapes :
-
résolution du problème d’approximation pour déterminer les coefficients du filtre qui satisfait un gabarit en fréquence donné ;
-
choix d’une structure et quantification des coefficients du filtre en un nombre fini de bits ;
-
quantification des variables du filtre, c’est-à-dire choix d’une longueur de mots pour :
-
l’entrée,
-
la sortie,
-
les mémoires intermédiaires ;
-
-
vérification par simulation que le filtre final satisfait au gabarit fixé.
Nous nous intéressons ici à la première étape. L’étape 4 n’est nécessaire que si les étapes 2 et 3 sont mises en œuvre ; or le choix d’une structure de réalisation et les problèmes de quantifications ne sont pas indépendants de l’architecture du calculateur utilisé pour la réalisation pratique. De plus, il faudrait tenir compte de la notion d’efficacité de calcul (algorithmique rapide) et de manière paradoxale, ce n’est pas toujours l’algorithme qui nécessite le moins d’opérations qui s’avère le plus efficace pour une architecture donnée. L’ensemble de ses problèmes que l’on peut réunir sous la notion d’adéquation architecture algorithme ne possède pas de réponse unique et leur étude pourrait faire l’objet d’un développement plus complet.
Parmi les avantages des filtres RIF, on peut citer :
-
la possibilité de réaliser des filtres à phase linéaire ;
-
la possibilité d’obtenir un bruit de calcul assez faible.
Parmi les inconvénients, il y a :
-
la nécessité d’un ordre assez élevé pour obtenir des filtres à coupure raide ;
-
pour les filtres à phase linéaire, un temps de propagation de groupe n’est pas forcément un nombre entier d’échantillons.
2.1 Caractéristiques des filtres à phase linéaire
L’intérêt principal des filtres RIF réside dans la possibilité d’obtenir des filtres à phase linéaire ...
Cet article fait partie de l’offre
Le traitement du signal et ses applications
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Synthèse des filtres non récursifs
BIBLIOGRAPHIE
-
(1) - PROAKIS (J.G.), MANOLAKIS (D.G.) - Digital Signal Processing, (principles, algorithms and applications. - Prentice Hall (1996).
-
(2) - RABINER (L.R.), GOLD (B.) - Theory and Application of Digital Signal Processing. - Prentice Hall (1975).
-
(3) - ELLIOT (D.F.) - Handbook of Digital Signal Processing. - Academic Press, Londres (1987).
-
(4) - BURRUS (C.S.) - Multiband least squares fir filter design. - IEEE Trans. Signal Processing, 43 (2), p. 412-421 (1995).
-
(5) - SOEWITO (A.W.), BURRUS (C.S.), GOPINATH (R.A.) - Least squared error fir filter design with transition bands. - IEEE Trans. Signal Processing, 40 (6), p. 1327-1340 (1992).
-
(6) - BARRETO (J.A.), BURRUS (C.S.), SELESNICK (I.W.) - Iterative reweighted least-squares design of fir filters. - IEEE Trans. Signal Processing, 42 (11), p. 2926-2936...
Cet article fait partie de l’offre
Le traitement du signal et ses applications
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive