Présentation
En anglaisRÉSUMÉ
Les fibres optiques jouent un rôle majeur dans les réseaux de télécommunications modernes. Leur structure et leurs caractéristiques, la propagation des signaux et les distorsions qu’ils subissent sont décrites. Aujourd'hui ce sont les fibres classiques qui sont principalement utilisées dans les réseaux. Mais les « fibres spéciales », et en particulier les fibres microstructurées connaissent des développements intéressants.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Optical fibres play a major role in modern telecommunication networks. Their structure and characteristics, the propagation and distortion of signals are described. At this time, traditional fibres are the most widely used in networks. However, "special fibres" and, in particular, microstructured fibres are experiencing interesting developments.
Auteur(s)
-
Michel JOINDOT : Ancien élève de l'École polytechnique - Ingénieur en Chef des télécommunications
-
Irène JOINDOT : Ingénieur Ensi Caen - Docteur de l'Université de Montpellier, habilitée à diriger les recherches
INTRODUCTION
Une fibre optique est un guide diélectrique permettant de conduire la lumière sur une grande distance. La très grande majorité des fibres utilisées présentent une symétrie de révolution autour de leur axe et sont constituées de matériaux isotropes (verres). Notre objectif est de présenter les propriétés fondamentales de ces fibres en vue de leur application aux télécommunications, c'est-à-dire leurs propriétés concernant l'affaiblissement et la déformation subis par les signaux lors de leur propagation. Mais nous aborderons également l'étude de nouvelles structures apparues ces dernières années, les fibres microstructurées, dans lesquelles la condition d'isotropie du matériau n'est plus respectée.
C'est en 1966 que sera lancée l'idée de transporter sur de grandes distances des signaux optiques sur une fibre, mais il faudra des années pour maîtriser les procédés de fabrication et contrôler la composition des matériaux qui influe de manière décisive sur les pertes. On parviendra alors à obtenir des atténuations assez faibles pour que devienne possible la transmission des signaux sur des distances suffisamment grandes pour présenter un intérêt pratique et rendre la technique optique compétitive. Partie en 1960 de 1 000 dB/km, l'atténuation est descendue à 20 dB/km en 1975, puis 0,2 dB/km en 1984.
Comparée aux autres supports de transmission existants, la fibre optique présente une atténuation faible et quasiment constante sur une énorme plage de fréquences et offre ainsi l'avantage de bandes passantes gigantesques, permettant d'envisager la transmission de débits numériques très importants. Mais la fibre ne se réduit pas à un atténuateur parfait : la variation de l'indice de réfraction en fonction de la longueur d'onde est la cause principale de la dispersion chromatique, qui va entraîner une déformation des signaux transmis. Cet effet linéaire se manifeste d'autant plus que la distance est élevée, et la bande passante des signaux transmis importante. Aussi, tant que les atténuations des fibres ont été suffisamment grandes pour que le signal doive être régénéré avant d'avoir été notablement déformé, la dispersion a-t-elle été négligée. Avec la diminution des pertes et l'apparition de systèmes à très grande capacité, la dispersion chromatique est devenue un effet fondamental.
Les amplificateurs à fibre ont permis d'injecter dans les fibres des puissances importantes et de compenser les pertes de propagation ; la contrepartie en est l'apparition d'effets non linéaires, qui sont aussi une source de dégradation du signal, mais peuvent également être utilisés dans certaines conditions de manière positive pour compenser l'influence de la dispersion chromatique. Dans le cas général, effets linéaires et non linéaires interagissent et ne peuvent donc être isolés et traités séparément.
La fibre optique apparaît donc comme un milieu de propagation complexe, dont l'effet sur un signal ne peut être prédit qu'au moyen de logiciels de simulation : de nombreux laboratoires ont développé de tels outils.
MOTS-CLÉS
KEYWORDS
optics | communications | cables
VERSIONS
- Version archivée 1 de mai 1999 par Michel JOINDOT, Irène JOINDOT
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Télécommunications optiques > Fibres optiques pour télécommunications > Effets combinés des distorsions linéaires et non linéaires : les solitons
Cet article fait partie de l’offre
Réseaux Télécommunications
(139 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Effets combinés des distorsions linéaires et non linéaires : les solitons
4.1 Phénomène de base
La transmission par solitons s'appuie dans son principe sur l'existence d'un régime stable de propagation d'impulsions isolées, de forme et de puissance particulières choisies de telle sorte que les effets dus à la dispersion chromatique et à l'automodulation de phase (effet Kerr) se compensent. Cet équilibre garantit ainsi l'invariance des caractéristiques de l'impulsion le long de la fibre supposée sans pertes, quelle qu'en soit la longueur. L'idée fondamentale est donc d'utiliser les effets non linéaires pour stabiliser la propagation alors qu'on cherche à les minimiser en transmission conventionnelle.
Si β2 est positif, le temps de propagation de groupe augmente avec la fréquence et le front avant (resp. arrière) se propage plus (resp. moins) vite, si bien que l'impulsion s'élargit continuellement au cours de la propagation : c'est ce qui se produit sur la fibre standard. Lorsque β2 est au contraire négatif, les phénomènes linéaires et non linéaires induisent des effets opposés et l'impulsion commence par se rétrécir avant de s'élargir à nouveau. La non-linéarité, combinée avec la dispersion, peut ainsi jouer un rôle bénéfique en réduisant la largeur des impulsions transmises.
Le soliton est la solution à la recherche d'un équilibre stable dans ce régime de propagation. Plus précisément, le soliton est une impulsion de forme générique :
dont on peut montrer qu'elle vérifie l'équation de Schrödinger sans pertes (α = 0) à condition que Pc , puissance crête, et t, largeur caractéristique de l'impulsion, soient liées par une relation :
Cet article fait partie de l’offre
Réseaux Télécommunications
(139 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Effets combinés des distorsions linéaires et non linéaires : les solitons
BIBLIOGRAPHIE
-
(1) - JOINDOT (M.I.) et douze coauteurs - Les télécommunications par fibres optiques. - Collection Technique et Scientifique des Télécommunications. Dunod (1996).
-
(2) - VASSALLO (C.) - Théorie des guides d'ondes électromagnétiques. - 2 tomes, Eyrolles, Paris (1985).
-
(3) - MARCUSE (D.) - Loss analysis of single mode fiber splices. - Bell System Technical Journal, 56, p. 703-718 (1977).
-
(4) - PETERMANN (K.) - Fundamental mode microbending loss in graded index and W fibers. - Optical and Quantum Electronics (GB), 9, p. 167-175 (1977).
-
(5) - AGRAWAL (G.P.) - Non linear fiber optics. - Academic Press New York (1989).
-
(6) - MOLLENAUER (L.F.), EVANGELIDES (S.G.), HAUS (H.A.) - Long distance soliton propagation using lumped amplifiers and dispersion shifted fibers. - ...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Deux conférences majeures se tiennent chaque année, au cours desquelles sont présentées les dernières avancées dans le domaine de la recherche en télécommunications optique :
-
ECOC (European Conference on Optical Communications) qui a lieu dans une ville européenne en septembre. L'adresse du site est http://www.ecocxxxx.org où xxxx désigne l'année ;
-
OFC (Optical Fiber Communications Conference) qui a lieu aux États Unis en février mars http://www.ofcnfoec.org
Recommandations concernant les divers types de fibres optiques pour les télécommunications disponibles sur le site de l'Union Internationale des Télécommunications (UIT) à l'adresse http://www.itu.int/rec/T-REC-G.652/fr
HAUT DE PAGECet article fait partie de l’offre
Réseaux Télécommunications
(139 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive