Présentation
EnglishRÉSUMÉ
L'Internet des Objets change la vision que l'on peut avoir des protocoles, notamment en termes de contraintes énergétiques. L'IETF (Internet Engineering Task Force), l'organisme qui standardise les protocoles de l'Internet, permet des services interopérants entre les applications existantes sur Internet. Le protocole 6LoWPAN a été développé pour définir l'adaptation d'IPv6 ainsi que la manière de transporter les datagrammes IP sur des liaisons IEEE802.15.4 et d'exécuter les fonctions de configurations nécessaires pour former et maintenir un sous-réseau IPv6 (Internet Protocol version 6). Différentes modifications aux protocoles d'IPv6 ont été faites pour adapter le réseau Internet aux caractéristiques des objets.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Ana MINABURO : Consultant
-
Laurent TOUTAIN : Maître de conférences, RSM, Telecom Bretagne, Rennes, France
INTRODUCTION
L'Internet des Objets modifie profondément la vision habituelle des protocoles, par le fait que les contraintes sont différentes des environnements informatiques classiques. En particulier, les contraintes énergétiques sont importantes, les objets auraient des sources d'alimentation non continues, soit des batteries, soit une récupération de l'énergie ambiante (changement de température, vibrations, énergie des ondes radio...). Heureusement, les processeurs actuels sont relativement sobres en consommation d'énergie et la transmission est le critère à optimiser. Il faut cependant maintenir les équipements inactifs le plus longtemps possible pour éviter d'émettre trop régulièrement des données, l'écoute étant aussi coûteuse que l'émission, du fait des opérations complexes de décodage des signaux. Il faudrait également éviter qu'un équipement capte en permanence tout le trafic pour récupérer les données qui lui sont destinées. On voit que ce dernier critère va à l'encontre de protocoles basés sur les réseaux à diffusion comme le Wi-Fi. Une autre conséquence liée à la préservation de l'énergie résulte de la faible puissance des signaux émis, ce qui conduit soit à imposer un relayage des données si les distances à parcourir sont grandes, soit à utiliser des codages sophistiqués pour parcourir de longues distances, mais au détriment du débit.
Finalement, une autre différence provient de la faible puissance de calcul comparé à celle d'un ordinateur, ainsi que les faibles ressources en mémoire qui imposeront des contraintes fortes sur la taille du programme embarqué et sur les contextes imposés pour dialoguer avec son environnement (tables de voisinage...). Cela exigera une approche protocolaire beaucoup plus intégrée que ce qu'offre le modèle de référence de l'ISO (International Organization for Standardization), qui tend à séparer les fonctionnalités et à insister sur les interfaces entre les couches. Ainsi, dans l'Internet des Objets, même si le modèle est respecté dans sa philosophie, sa mise en œuvre obligera à des optimisations, comme le partage d'information entre les couches. La loi de Moore, sur l'évolution des puissances de calculs, est à interpréter autrement quand il s'agit de l'Internet des Objets, car, vu la diffusion massive attendue dans les années à venir, les critères de coût seront déterminants. Cette loi tendra donc vers une réduction des coûts, plutôt qu'une augmentation drastique de la puissance.
Enfin, l'Internet des Objets devra prendre en compte des cycles de vie des objets totalement différents des évolutions de l'informatique. La durée de vie d'un compteur électrique (ou de gaz) est d'une vingtaine d'années, même si Internet Protocol est resté stable sur des périodes similaires, les moyens de transmettre les paquets ont beaucoup évolué. Deux cas de figures se présenteront donc :
-
intégrer à l'Internet des Objets des équipements déjà existants n'ayant pas de capacité de communication ou utilisant des méthodes propriétaires, incompatibles avec les protocoles de l'Internet ;
-
déployer des systèmes et devoir garantir leur interopérabilité pour une dizaine d'années.
Des objets connectés sont aujourd'hui disponibles et des compagnies proposent déjà des produits permettant de compter la nourriture ingérée, le nombre de cigarettes électroniques fumées, le suivi des paramètres d'un sportif... Ces solutions sont généralement propriétaires et ne forment pas à proprement parler un Internet des Objets, car l'interopérabilité n'est pas le critère dominant. Si les protocoles transportant l'information sont relativement similaires (Bluetooth ou Bluetooth low energy pour la communication entre l'objet et un agrégateur (généralement un téléphone portable), puis HTTP (Hyper Text Transfer Protocol) pour stocker les données dans des serveurs), la manière de représenter ces données n'est pas normalisée rendant impossible la combinaison de plusieurs applications pour offrir un service plus riche.
Si, pour pouvoir investir ce nouveau domaine de l'Internet des Objets, les protocoles doivent être adaptés aux nouvelles contraintes, la sécurité doit être également renforcée, car les objets ont une action dans le monde réel et un mauvais fonctionnement peut entraîner de conséquences graves. Quant aux architectures, elles doivent être les plus génériques possibles pour permettre l'interconnexion et ne pas être liées à un usage particulier.
Le protocole 6LoWPAN a été développé pour définir l'adaptation d'IPv6, ainsi que la manière de transporter les datagrammes IP sur des liaisons IEEE 802.15.4 et d'exécuter les fonctions de configurations nécessaires pour former et maintenir un sous-réseau IPv6 (Internet Protocol version 6).
MOTS-CLÉS
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Réseaux Télécommunications
(141 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Protocole IEEE 802.15.4
La popularité du protocole IEEE 802.15.4 le rend aussi important que IPv6 pour l'Internet des Objets, du moins pour les applications professionnelles. Pour l'électronique grand public, Bluetooth LE (Low Energy ) semble s'imposer. Le protocole prend en compte les caractéristiques des dispositifs embarqués : avec une consommation basse d'énergie, une faible mémoire et un faible traitement de ressources. Ainsi, le protocole définit un faible débit de données, une faible puissance et des transmissions à courte portée de fréquence radio pour les réseaux WPAN (Wireless Personal Area Networks). Par contre, ce protocole présente différentes caractéristiques similaires aux autres protocoles de niveau 2 comme : Ethernet et Wi-Fi. Le protocole 802.15.4 offre un MTU réduit de 127 octets, ce qui est très petit comparé aux 1 500 octets d'Ethernet. De plus, 802.15.4 ne fournit pas une diffusion broadcast complète où tous les nœuds peuvent recevoir des messages des autres nœuds avec une transmission physique unique. Les réseaux 802.15.4 sont plutôt composés de domaines qui se chevauchent avec un voisinage radio formé par les nœuds accessibles avec une transmission unique.
Le protocole IEEE 802.15.4 décrit la couche physique et la couche MAC qui seront utilisés ensuite pour l‘IETF comme base pour l'Internet des Objets.
2.1 Couche physique
La couche physique est responsable de différentes fonctions :
-
activation ou désactivation de l'émetteur radio ;
-
réception et transmission des données ;
-
sélection de la fréquence du canal ;
-
détection de l'énergie dans un canal ;
-
vérification que le canal est libre (CCA, Clear Channel Assessment ).
Le protocole IEEE 802.15.4 définit 15 modes physiques différents de transmission afin de choisir la bande de fréquence et la modulation qui seront utilisées lors de la transmission des données.
Il y a des fréquences qui sont libres de licence et donc plus utilisées : 868-868,6 MHz en Europe, 902-928 MHz en Amérique du...
Cet article fait partie de l’offre
Réseaux Télécommunications
(141 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Protocole IEEE 802.15.4
BIBLIOGRAPHIE
-
(1) - Internet Engineering Task Force (IETF) - http://www.ietf.org/
-
(2) - IEEE Standard for Local and Metropolitan Area Networks. - Part 15.4 : Low-rate wireless personal area networks (LR-WPANs), p. 1-314, 5 sept. 2011.
-
(3) - IEEE P1901.2 - IEEE standard for low- frequency narrowband power line communications for smart grid applications. - IEEE Communications Society (2013).
-
(4) - NARTEN (T.), NORDMARK (E.), SIMPSON (W.), SOLIMAN (H.) - RFC 4861, Neighbor discovery for IP version 6 (IPv6). - Draft Standard, sept. 2007.
-
(5) - Routing Over Low Power and lossy networks (ROLL). - IETF working group, https://datatracker.ietf.org/wg/roll/documents/
-
(6) - WINTER (T.), editor et al - RPL : IPv6 routing protocol for low-power and lossy neworks. - RFC 6550, mars 2012.
- ...
Cet article fait partie de l’offre
Réseaux Télécommunications
(141 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive