Présentation
En anglaisRÉSUMÉ
L’intelligence artificielle (IA) est en pleine croissance ; elle interroge tous les publics : particuliers, professionnels et universitaires. Pour encadrer ces échanges, des principes et pratiques de mesure des performances, rationnelles et partagées, ainsi que ceux des limites de systèmes intelligents doivent être établis.
Cet article présente une approche méthodique et conforme aux règles de la métrologie, permettant d’en dessiner les grandes lignes :
- des métriques pour effectuer des mesures quantitatives et répétables de performance ;
- des environnements de test physiques et virtuels pour procéder à des expérimentations reproductibles et représentatives des conditions de fonctionnement réelles de l’IA évaluée et des outils organisationnels (benchmarking, challenges, compétitions).
Le tout répondant aux besoins de l’ensemble de l’écosystème.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Artificial intelligence (AI) is rapidly growing, questioning all audiences, individual, professional, academic. Rational and shared principles and practices to measure the performance and limits of intelligent systems have to be set up.
A methodical approach that complies with the rules of metrology allows us to draw the broad outlines: metrics to carry out quantitative and repeatable performance measurements, physical and virtual testing environments to perform reproducible experiments that are representative of the real operating conditions of the AI being evaluated, and organizational tools (benchmarking, challenges, competitions) that meet the needs of the entire ecosystem.
Auteur(s)
-
Guillaume AVRIN : Responsable du département « Évaluation de l’IA » - Laboratoire national de métrologie et d’essais, Paris, France
INTRODUCTION
L’intelligence artificielle (IA) connaît depuis 2017 d’importants développements dans de nombreux secteurs professionnels (aide au diagnostic, identification biométrique, chatbot, détection de vulnérabilités et menaces de cybersécurité, robots industriels collaboratifs, robots d’inspection et de maintenance, système de mobilité autonome, etc.) et domestiques (robots d’assistance à la personne, dispositifs médicaux, assistants personnels, etc.). Elle est ainsi au rang des toutes premières priorités européennes et internationales de développement technologique et industriel et la rupture sanitaire de 2020 concourt à cette transformation vers une société plus « virtualisée », moins exposée aux vulnérabilités biologiques.
De manière à ce que le marché ne soit pas uniquement porté par l’offre, et que les conditions d’un rapprochement de cette dernière avec la demande soient réunies, il convient d’avoir à disposition des méthodes scientifiques et techniques d’évaluation de l’IA . Elle promet d’apporter des résultats quantitatifs et fiables concernant les niveaux de performance, de robustesse, d’explicabilité atteints par les différents systèmes d’IA. Les utilisateurs finaux disposeront ainsi des garanties conditionnant l’acceptabilité de ces technologies. Ils pourront choisir parmi différentes solutions existantes grâce à des références communes objectives et non ambiguës. Les développeurs bénéficieront quant à eux de repères pour orienter leurs efforts de R&D et de contrôle qualité, ainsi que d’outils pour démontrer leur avance et se démarquer de la concurrence. L’évaluation instaurera donc la confiance nécessaire à la transition d’une IA en développement vers une IA marchande.
Un travail de normalisation est en cours pour adapter les référentiels existants concernant le développement logiciel (IEC 62304 pour les dispositifs médicaux, ISO 26262 pour les véhicules routiers, etc.) aux spécificités de l’IA (notamment au Cen-Cenelec JTC21 et à l’ISO/IEC JTC1/SC42).
Ce travail portera notamment sur les outils et méthodes d’évaluation, dont deux approches génériques peuvent être distinguées (cf. ISO/IEC 17011) : l’audit et le test. Les audits consistent à analyser les preuves de conformité vérifiables, qualitatives ou quantitatives, telles que les enregistrements, les déclarations de faits, etc. La mise en œuvre des audits pour l’IA est similaire à celle des autres produits et technologies. Par exemple, le LNE a proposé un référentiel de certification des processus de mise au point de fonctionnalités d’IA reposant sur des audits . Bien que n’étant pas strictement liées aux audits de conformité, d’autres évaluations de l’IA reposant sur des jugements d’experts sont également présentées dans la littérature (par exemple le test de Turing). Les évaluations reposant sur des jugements humains sont généralement moins onéreuses à mettre en œuvre que le test lors de leur première instance, mais présentent des difficultés de passage à l’échelle lorsque le nombre de systèmes à évaluer est important, puisqu’elles ne sont pas automatisées. Elles sont également subjectives .
Les tests constituent une alternative aux évaluations reposant sur des jugements humains ou sur des preuves formelles (encore inaccessibles pour de nombreuses applications d’IA). Ils présentent quelques caractéristiques propres à l’IA détaillées dans le présent article.
KEYWORDS
performance | metrology | artificial intelligence | Metrics | experiment | test | AI
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Génie industriel > Industrie du futur > Industrie du futur : outils numériques > Évaluation de l’intelligence artificielle > Caractéristiques mesurées des systèmes d’IA
Accueil > Ressources documentaires > Innovation > Industrie du futur > Industrie du futur : outils numériques > Évaluation de l’intelligence artificielle > Caractéristiques mesurées des systèmes d’IA
Accueil > Ressources documentaires > Génie industriel > Métier : responsable qualité > Méthodes de mesure > Évaluation de l’intelligence artificielle > Caractéristiques mesurées des systèmes d’IA
Accueil > Ressources documentaires > Mesures - Analyses > Instrumentation et méthodes de mesure > Méthodes de mesure > Évaluation de l’intelligence artificielle > Caractéristiques mesurées des systèmes d’IA
Cet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(239 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Caractéristiques mesurées des systèmes d’IA
3.1 Critères d’évaluation
Un critère d’évaluation est une caractéristique/propriété/attribut d’un système que l’on considère pour apprécier sa valeur. Les critères les plus fréquemment retenus pour l’IA sont présentés ci-après.
-
Performance
La performance d’un système d’IA correspond à l’exactitude de ses sorties. Comme le précise le VIM , un système sera considéré exact s’il est fidèle (faible variabilité des sorties en présence d’une faible variabilité des données d’entrée) et juste (pour une faible variabilité des données d’entrée, le résultat renvoyé par le système est correct en moyenne).
-
Robustesse
Le niveau de robustesse d’un système d’IA est directement déterminé par la taille du domaine d’exploitation où le système intelligent fonctionne en mode « nominal », c’est-à-dire où il maintient des performances conformes aux exigences.
-
Résilience
La résilience d’un système d’IA dépend de sa capacité à fonctionner en mode « dégradé », lorsque ses données d’entrée sortent de son domaine de fonctionnement nominal (en raison d’un défaut de capteur, d’attaques adverses, etc.).
-
Explicabilité
Une IA est explicable si un humain peut comprendre la décision qui a été prise (par exemple parce que celui-ci est capable de justifier ses décisions).
-
Qualité de l’interaction humain-machine
Ce critère fait souvent l’objet d’une évaluation subjective, notamment à partir de grandeurs ordinales comme celles d’une échelle de Likert (« Très satisfait », « Satisfait », « Pas du tout satisfait », etc.). Cette satisfaction est pourtant le fruit de nombreux paramètres...
Cet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(239 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Caractéristiques mesurées des systèmes d’IA
BIBLIOGRAPHIE
-
(1) - EUROPÉENNE (C.) - Intelligence artificielle – Une approche européenne axée sur l’excellence et la confiance - (2020).
-
(2) - TEAM (A.P.) - Artificial Intelligence Measurement and Evaluation at the National Institute of Standards and Technology - (2021).
-
(3) - LNE - Certification de processus pour l’IA - (2021).
-
(4) - HERNANDEZ-ORALLO (J.) - The measure of all minds: evaluating natural and artificial intelligence - (2017).
-
(5) - AVRIN (G.), BARBOSA (V.), DELABORDE (A.) - AI evaluation campaigns during robotics competitions: the METRICS paradigm, - chez Evaluating Progress in AI (2022).
-
(6) - AVRIN (G.), DANIEL (B.), LARDY-FONTAN (S.), RÉGNIER (R.), RESCOUSSIÉ (R.), BARBOSA (V.) - Design...
DANS NOS BASES DOCUMENTAIRES
NORMES
-
BIPM : Vocabulaire international de métrologie – Concepts fondamentaux et généraux et termes associés (VIM) 3e édition - JCGM 200 - 2012
ANNEXES
Projet METRICS (2020-2023, financé par H2020) – Metrological evaluation and testing of robots in international competitions
Objectif : organiser des compétitions de robots intelligents dans quatre domaines : santé, agroalimentaire, inspection et maintenance des infrastructures, production agile. Il s’agit notamment de bâtir une structure pérenne rassemblant l’ensemble des compétences européennes pour apporter conjointement une solution satisfaisante à la question de l’évaluation des systèmes robotisés, condition impérative de leur acceptabilité.
Consortium : LNE, Université Hochschule Bonn-Rhein-Sieg (BRSU), Centre avancé pour les technologies aérospatiales (FADA-CATEC), Centre pour la recherche et l’expérimentation maritimes de l’OTAN (OTAN-CMRE), CEA, E-CIVIS, Université Heriot-Watt, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Mines-Télécom Transfert (IMT Transfert), Ofiis, Polytechnique de Milan, Proxinnov, Robotex MTU, Université Tampere, Université de Milan, Université de Nottingham.
Projet 3SA (2020-2023, financé par IRT SystemX) – Simulation pour la sécurité des systèmes du véhicule autonome
Objectif : développer des outils et méthodologies reposant sur la simulation numérique pour démontrer la sécurité des véhicules autonomes.
Consortium : LNE, IRT SystemX, CEA, Apsys, AVsimulation, Expleo, PSA, Oktal-SE, Renault, SECTOR Group, Valeo.
https://www.irt-systemx.fr/projets/3sa/
Projet ROSE (2018-2022, financé par Ecophyto...
Cet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(239 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive