Présentation
EnglishRÉSUMÉ
L'une des applications fondamentales en radio surveillance est la détermination des angles d'incidence des ondes radioélectriques à des fins de localisation. La radiogoniométrie des signaux y constitue la base des modes d'alerte et de réaction des forces tactiques présentes sur les théâtres d'opérations. Par ailleurs, la localisation des émetteurs à partir de radiogoniométries est une composante essentielle du Renseignement d'Origine ElectroMagnétique (ROEM) partie de systèmes terrestres, navals ou aéroportés. Dans le domaine civil, la radiolocalisation contribue fortement à la résolution des problèmes de brouillage et d’interférence, ainsi qu'aux mesures et contrôles qui constituent le coeur de la régulation des fréquences.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
François delaveau : Ingénieur de l'École nationale supérieure de techniques avancées - Expert en traitement du signal et guerre électronique de Thales Communications & Security
-
Yvon LIVRAN : Ingénieur de l'École nationale d'Ingénieurs de Brest - Responsable de la réglementation du spectre pour Thales Communications & Security - Cette édition est une mise à jour de l'article de Gilbert MULTEDO intitulé Radiosurveillance du Spectre paru en 1994
INTRODUCTION
Les communications sont devenues essentielles, aussi bien dans le domaine civil (fonctionnement politique, économique et social de notre société de plus en plus axée sur la transmission d'informations entre particuliers, acteurs économiques, dirigeants et organismes régulateurs), que militaire, pour la conduite des forces et le contrôle du théâtre d'opérations.
L'utilisation rationnelle et efficace du spectre pour les applications civiles et la vérification de la bonne application de la réglementation a toujours nécessité des fonctionnalités de radiogoniométrie des signaux et de radiolocalisation des émetteurs de communication, intégrées aux moyens de surveillance du spectre. La radiogoniométrie est alors principalement liée aux besoins :
-
de localiser les émetteurs brouilleurs ou intrus ;
d'aider, le cas échéant, au diagnostic de situations d'interférences ;
de rendre plus fiables et précis le contrôle du bon emploi du spectre, les mesures des niveaux de champs et les vérifications de conformité des émetteurs légitimes aux réglementations locales.
Dans le domaine militaire, le besoin d'alerte et de réaction des forces de théâtre aux menaces possibles a toujours fait appel à des fonctionnalités fortement automatisées de radiogoniométrie, associées, le cas échéant, à des fonctions d'identification des signaux interceptés [TE 6 893].
Intégrés aux dispositifs tactiques déployés sur les théâtres ou aux systèmes d'informations des forces en opérations, les radiogoniomètres sont des senseurs essentiels pour les modes d'alerte et d'autoprotection. La radiogoniométrie et la radiolocalisation contribuent par ailleurs fortement au renseignement d'origine électromagnétique (ROEM), et sont de ce fait présentes dans de nombreux senseurs et systèmes de senseurs terrestres, maritimes et aéroportés.
Les progrès des technologies de transmission numériques, les volumes transmis, la variabilité des formes d'ondes et des protocoles d'accès radio se sont fortement accélérés ces vingt dernières années, accroissant, non seulement l'hétérogénéité des signaux, mais aussi la densité d'émetteurs, la complexité et l'in-stationnarité des environnements de propagation ; et finalement les besoins de sensibilité, de résistance aux interférences et aux brouillages des radiogoniomètres. Par ailleurs, la tacticité, la rapidité et l'automatisation des radiogoniomètres restent dimensionnantes pour leurs performances opérationnelles.
Toutefois, pour répondre à cette complexification et au renouvellement en conséquence des exigences opérationnelles, les radiogoniomètres ont pu bénéficier, eux aussi, des progrès technologiques récents pour augmenter drastiquement les largeurs de bande et les vitesses de balayage, et pour paralléliser massivement les traitements embarqués.
Cet exposé s'appuie sur les articles précédents [TE 6 890] et [TE 6 891].
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Technologies de l'information > Le traitement du signal et ses applications > Radiolocalisation > Radiosurveillance du spectre - Goniométrie et localisation > Radiogoniométrie
Accueil > Ressources documentaires > Électronique - Photonique > Technologies radars et applications > Gestion du spectre électromagnétique > Radiosurveillance du spectre - Goniométrie et localisation > Radiogoniométrie
Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Radiogoniométrie
2.1 Principes et notations
Un radiogoniomètre mesure la direction d'arrivée d'une onde électromagnétique par rapport à une direction de référence. Le processus est purement passif et indécelable par l'émetteur.
Quels que soient leurs principes, les radiogoniomètres classiques utilisent tous l'hypothèse de fronts d'ondes plans associés à chaque émetteur : les lieux isophases (c'est-à-dire, à phase constante) de l'onde émanant d'un émetteur sont supposés être des plans parallèles à distance suffisante de l'émetteur (c'est-à-dire, au-delà de la distance de Fresnel , D Tx étant le diamètre – ou plus grande longueur – de l'aérien de l'émetteur, λ étant la plus petite longueur d'onde reçue).
-
Objectif
La mesure du goniomètre a pour objectif de donner la normale à ces lignes isophases, normale qui correspond, sous les hypothèses précédentes, à la direction d'arrivée de l'émetteur.
On distingue les radiogoniomètres 1D, qui n'estiment que le gisement ou l'azimut, et les goniomètres 2D qui estiment le gisement ou l'azimut, et l'élévation ou le site (voir les notations définies sur la figure 1) :
-
gisement et élévation : les références sont définies par la géométrie et les axes de symétrie de l'aérien ;
-
azimut : la référence est, en général, le nord magnétique ou géographique ;
-
site : la référence est, en général, l'horizontale locale. On utilise parfois le complémentaire à l'angle de site, repéré par rapport à la verticale locale.
-
-
Applications
La radiogoniométrie s'applique a priori à tous types de signaux de communications, sans protocole particulier entre émetteur et capteur susceptible...
Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Radiogoniométrie
BIBLIOGRAPHIE
-
(1) - BRONEZ (T.P.), CADZOW (J.A.) - An algebraic approach to superresolution array processing. -
-
(2) - GERMAIN (P.), MAGUER (M.), KOPP (L.) - Comparison of resolving power of array processing method by analysis an analytical criterion, Addendum Proc. ICASSP-1989. - IEEE Transaction on Aerospace, vol. AES-19, no 1, p. 123-133, janv. 1983.
-
(3) - SHAN (T.J.), KAILATH (T.) - Adaptive beamforming for coherent signals and interference. - IEEE Trans. Acou. Speech Signal Processing, vol. 33, no 3, p. 527-536, juin 1985.
-
(4) - FRIEDLANDER (B.), WEISS (A.J.) - Direction finding using spatial smoothing with interpolated arrays. - IEEE Transactions on Aerospace and Electronics Systems, vol. 28, no 2, p. 574-587 (1992).
-
(5) - WIDROW (B.), DUVALL (K.M.), GOOCH (R.), NEWMANN (W.C.) - Signal cancellation phenomena in adaptive antennas : causes and cures. - IEEE Trans. Ant. Prop., vol. 30, no 3, p. 469-478, mai 1982.
-
...
Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive