Présentation
RÉSUMÉ
Cet article fait le point sur les avancées récentes de la mesure de la pesanteur terrestre, mesure essentielle pour la connaissance de la forme de la Terre, mais également en géophysique, en géodésie, en physique fondamentale et en métrologie. Sont présentées les mesures disponibles, absolues et relatives, ainsi que les mesures particulières (puits, fond de mer, en avion, depuis l’espace) effectuées dernièrement. L’évolution des instruments de mesure, des techniques spatiales et l’utilisation des satellites ont énormément contribué à ces nouvelles connaissances.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Michel DIAMENT : Physicien à l’Institut de physique du globe de Paris (IPGP) - Laboratoire de gravimétrie et géodynamique, département de géophysique spatiale et planétaire (UMR CNRS/IPGP/Paris-7 7096)
INTRODUCTION
La mesure de la pesanteur terrestre est utile pour de nombreuses applications : en géophysique, en géodésie en passant par la navigation, la physique fondamentale et la métrologie. En géophysique [R 2 345] [C 224], l’analyse et la modélisation des variations spatiales ou temporelles du champ de pesanteur permettent d’avoir accès à la structure en densité du globe terrestre et à ses éventuelles variations. Les applications vont de la physique du globe au génie civil en passant par la volcanologie, l’étude des ressources naturelles, l’océanographie et l’hydrologie. En géodésie [C 5 010], la connaissance des anomalies de pesanteur permet de déterminer l’altitude du géoïde (surface équipotentielle du champ de pesanteur terrestre qui se confond avec le niveau moyen des mers) par rapport à un ellipsoïde de référence. Il s’agit donc d’une mesure fondamentale pour la connaissance de la forme de la Terre. La connaissance de l’altitude du géoïde par rapport à un ellipsoïde de référence est également indispensable pour pouvoir comparer des résultats de mesures de nivellement utilisant des techniques spatiales (GPS : Global Positioning System) avec ceux de mesures classiques [1].
Depuis quelques années, nos connaissances sur le champ de pesanteur terrestre ont énormément progressé du fait, d’une part, des évolutions des instruments de mesure et, d’autre part, de l’apport des techniques spatiales. Les satellites ont permis de réaliser à la fois des mesures complémentaires comme l’orbitographie, l’altimétrie satellitaire [E 4 140], les méthodes de positionnement (GPS) [TE 6 715], la connaissance de la topographie que des mesures directes de la gravité terrestre à partir de missions dédiées.
On mesure désormais le module g du vecteur pesanteur g mais également ses gradients spatiaux (les éléments du tenseur dit de gradiométrie Txy ) à terre, en mer, en fond de mer, en avion, depuis l’espace.
On connaît également le champ de gravité d’autres corps du système solaire (planètes comme Mars et Vénus, satellites comme la Lune et même de certains « petits corps »).
Une partie de ce texte est adaptée du chapitre « Forme de la Terre et mesure de la pesanteur » de l’ouvrage Géophysique [19].
Cette étude a bénéficié des informations ou documents que Nicole Debéglia (Bureau de recherches géologiques et minières – BRGM), Sébastien Déroussi (Bureau FROG – French Resources Organization on GOCE), Arnaud Landragin (CNRS-BNM-SYRTE), Guillaume Martelet (BRGM) et Michel Sarrailh (Bureau gravimétrique international – BGI) m’ont communiqués ainsi que des commentaires de Marc Priel sur une version préliminaire. Je les en remercie. Je tiens à exprimer ma gratitude à Anne-Marie Gaulier pour sa patience.
VERSIONS
- Version archivée 1 de oct. 1988 par Jean-Claude RADIX
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Mesures - Analyses > Mesures mécaniques et dimensionnelles > Grandeurs mécaniques > Mesure du champ de pesanteur terrestre > Mesures depuis l’espace
Accueil > Ressources documentaires > Électronique - Photonique > Technologies radars et applications > Géomatique > Mesure du champ de pesanteur terrestre > Mesures depuis l’espace
Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Mesures depuis l’espace
Les orbites des satellites sont influencées par le champ de gravité. C’est une des forces agissant sur le satellite qui fait que celui-ci ne suit pas la trajectoire parfaitement elliptique que prédisent les lois de Kepler pour une Terre idéale sans hétérogénéités latérales de densité. L’analyse de ces perturbations des orbites, l’orbitographie, permet de mieux comprendre les forces agissant sur le satellite et en particulier le champ de gravité. Depuis les années 1970, on a pu ainsi déterminer les grandes longueurs d’onde spatiales (typiquement supérieures à 500 km) du champ de pesanteur terrestre en cumulant les observations sur de nombreux satellites dédiés (par exemple Starlette) ou non (comme les satellites Spot).
Il est désormais possible de mesurer directement ce qu’on appelle l’anomalie du géoïde sur les océans, c’est-à-dire la différence verticale entre l’équipotentielle du champ de pesanteur passant par la surface moyenne des océans (le géoïde) et une surface équipotentielle théorique (l’ellipsoïde de référence). Le principe de la mesure est simple. Un satellite artificiel est équipé d’un radar émettant des ondes à très haute fréquence (13 kHz) qui pourront se réfléchir sur la surface de la mer. La position du satellite artificiel est connue : c’est son orbite qui est déterminée par rapport à l’ellipsoïde de référence. La mesure radar permet d’obtenir la distance entre la surface instantanée de l’océan et le satellite. Parmi les satellites qui effectuent ce type de mesures, on peut citer Topex-Poseïdon et son successeur Jason.
On obtient donc la distance entre la surface instantanée de l’océan et l’ellipsoïde de référence. La distance entre la surface moyenne de l’océan et la surface instantanée correspond à ce que l’on appelle la topographie océanique (figure 18). Elle varie au cours du temps et en moyennant des mesures effectuées au même point à différents instants, on peut s’en affranchir et obtenir finalement la quantité cherchée, à savoir la distance entre le géoïde et l’ellipsoïde. L’anomalie du géoïde se mesure donc en mètres.
Notons que la topographie océanique, qui nous gêne ici, est en fait un signal fondamental qui est analysé par les océanographes. Ces satellites, qui...
Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Mesures depuis l’espace
BIBLIOGRAPHIE
-
(1) - DUQUENNE (H.) - QGF98, a new solution for the quasigeoid in France. - Finnish Geodetic Institute, Report 98:4, pp. 251-255. Proceedings of the 2nd Continental Workshop on the Geoid in Europe, Budapest, mars 10-14, 1998.
-
(2) - LONGMAN (I.M.) - Formulas for computing the tidal accelerations due to the moon and the sun. - Journal of Geophysical Research, 64, no 12, 2351-2355 (1959).
-
(3) - MERRIAM (J.B.) - Atmospheric pressure and gravity. - Geophysical Journal International, 109, 488-500 (1992).
-
(4) - NIEBAUER (T.M.), SASAGAWA (G.S.), FALLER (J.E.), HILT (R.), KLOPPING (F.) - A new generation of absolute gravimeters. - Metrologia, 32, 159-180 (1995).
-
(5) - BROWN (J.M.), NIEBAUER (T.M.), RICHTER (B.), KLOPPING (F.J.), VALENTINE (J.G.), BUXTON (W.K.) - A New Miniaturized Absolute Gravimeter Developed for Dynamic Applications. - Eos Trans. AGU, 80(32), 10 août 1999.
-
(6)...
JOUSSET (P.) - Études microgravimétriques sur les volcans. Applications sur le Merapi (Java Central) : implications pour sa structure et son dynamisme éruptif. - Université Paris-7 et IPGP (1996).
MARTELET (G.) - Modélisation de la structure crustale et du comportement mécanique de la lithosphère à partir des anomalies gravimétriques. Applications à l’Himalaya et au massif granitique du Mont-Lozère, Cévennes. - Université Paris-7 et IPGP (1999).
VERDUN (J.) - La gravimétrie aéroportée en région montagneuse. Exemple du levé franco-suisse sur les Alpes occidentales. - Université de Montpellier-2 (2000).
BOY (J.P.) - Effets des surcharges atmosphériques sur les variations de gravité et les déplacements de surface de la Terre. - Université de Strasbourg-1 (2000).
ROSAT (S.) - Variations temporelles de la gravité en relation avec la dynamique interne de la Terre. - Université de Strasbourg-1 (2004).
HAUT DE PAGE
Association française de normalisation AFNOR http://www.afnor.fr
NF X02-011 (11-1974), Valeur de la pesanteur terrestre
...Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive