Présentation
Auteur(s)
-
Florence SAGNARD : Ingénieur en sciences et technologies de l’université Pierre et Marie Curie - Docteur en physique de l’université Paris-Sud Orsay - Habilitée à diriger les recherches de l’université Marne-la-Vallée - Chargée de recherche, Institut français des sciences et technologies des transports, de l’aménagement et des réseaux (IFSTTAR), département COSYS, Villeneuve-d’Ascq, France
-
Fayçal REJIBA : Ingénieur en génie civil de l’École nationale d’ingénieurs de Tunis (ENIT) - Docteur en géophysique appliquée de l’université Pierre et Marie Curie, Paris 6 - Habilité à diriger des recherches de l’université Pierre et Marie Curie, Paris 6 - Maître de conférences à l’université Pierre et Marie Curie , Paris 6, Paris, France
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Le géoradar (en anglais GPR pour Ground Penetrating Radar) est une technique de prospection géophysique non destructive fondée sur l’analyse des phénomènes de propagation (réfraction, réflexion et diffraction) des ondes électromagnétiques hautes fréquences (10 MHz à 2 GHz) dans le sous-sol. Le géoradar, initialement de nature impulsionnelle, est fondé sur l’excitation du sous-sol, à partir d’une antenne d’émission, par un train d’impulsions de durée courte (1 à 50 ns) afin de détecter, à l’aide d’une antenne de réception, les échos successifs associés aux contrastes de permittivités ou de conductivités rencontrés par les ondes électromagnétiques au cours de leur propagation. Ces contrastes témoignent de la présence de cibles enfouies ou de stratifications du sous-sol. L’utilisation du géoradar fréquentiel est bien plus récente en raison des contraintes instrumentales qui lui sont associées, et il fait l’objet d’un nombre important de travaux de recherche actuels.
C’est le déplacement du radar à la surface ou dans le sol qui permet d’acquérir des traces (coupes radar ou « scans ») sur une fenêtre temporelle, et de former des radargrammes (ou images radar) de la structure du sous-sol. On distingue les applications visant à détecter des objets ou des anomalies de celles ayant pour objectif la détermination des propriétés intrinsèques du sous-sol. Les applications sont multiples : géologie, hydrologie, glaciologie, environnement, prospection minière, néotectonique, archéologie, génie civil... Parmi ces applications, on peut citer la localisation d’objets enfouis métalliques ou non métalliques tels que les câbles, les conduites, les fondations, les ferraillages, les cavités, les zones altérées, les mines et la caractérisation des propriétés intrinsèques des matériaux géologiques (sols, roches) ou artificiels (béton, l’asphalte ou le bois). Chaque type d’application requiert une mise en œuvre expérimentale spécifique (acquisition en réflexion ou transmission, échantillonnage spatial, cartographie 2D ou 3D, fréquence nominale de l’excitation...) et des traitements associés aux signaux bruts (filtrage, migration, inversion des données) afin de reconstituer un modèle du sous-sol. L’amélioration de la détection par un système géoradar tient actuellement au développement de nouvelles techniques de traitement du signal et de tomographie. Nous présentons ici les diverses étapes qui conduisent à la définition des paramètres optimaux d’acquisition en prospection géoradar.
VERSIONS
- Version archivée 1 de févr. 2010 par Florence SAGNARD, Fayçal REJIBA
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Électronique - Photonique > Technologies radars et applications > Géomatique > Géoradar - Principes et applications > Modélisations électromagnétiques
Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Modélisations électromagnétiques
3.1 Problème posé
Le développement de modèles électromagnétiques directs traitant du système géoradar et de son environnement a pour finalité l’optimisation de la configuration expérimentale, une meilleure analyse et une meilleure interprétation des radargrammes mesurés. La spécificité du géoradar est la prise en compte d’un environnement naturel donc complexe, formé généralement de milieux hétérogènes, anisotropes et à pertes. Par ailleurs, des phénomènes de couplage/induction dans la zone de champ proche des antennes sont induits par la proximité des antennes avec l’interface air-sol. Les méthodes numériques, fondées sur la discrétisation du domaine d’étude, sont actuellement les plus populaires et les plus efficaces pour représenter des géométries complexes par comparaison aux modèles analytiques (approximations asymptotiques) . En effet, ces méthodes ne font pas d’hypothèses a priori sur les interactions électromagnétiques (analyse « full-wave ») et peuvent être appliquées dans les domaines fréquentiel ou temporel.
Les deux principales applications associées aux modélisations électromagnétiques numériques...
Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Modélisations électromagnétiques
BIBLIOGRAPHIE
-
(1) - DANIELS (D.J.) - Ground penetrating radar. - 2nd edition, The IEE, London (2004).
-
(2) - JOL (H.M.) - Ground penetrating radar : theory and applications. - Elsevier (2009).
-
(3) - BENEDETTO (A.), PAJEWSKI (L.) - Civil engineering applications of ground penetrating radar. - Springer (2015).
-
(4) - MOLITON (A.) - Applied electromagnetism and materials. - Springer (2007).
-
(5) - BEHARI (J.) - Microwave dielectric behavior of wet soils. - Springer (2005).
-
(6) - SHIVOLA (A.) - Electromagnetic mixing formulas and applications. - The IEE (1999).
-
(7)...
ANNEXES
1 Revues et journaux scientifiques
Revues de l’AGU, American Geophysical Union (Geophysics...) http://www.agu.org/
Revues de l’EAGE, European Association of Geoscientists and Engineers (Near Surface, Geophysical Prospecting...) http://www.eage.org/
Journal of Applied Geophysics, Éd. Elsevier http://www.elsevier.com/locate/jappgeo
IEEE Transactions Geoscience and Remote Sensing http://www.grss-ieee.org/
HAUT DE PAGE
GPRMax http://www.gprmax.com/
REFLEXW ...
Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive