Présentation
EnglishRÉSUMÉ
L'histoire de la supraconductivité a été marquée par des découvertes inattendues, qui venaient toutes alimenter la théorie BCS du nom de ses auteurs Bardeen, Cooper et Schrieffer. Tout d’abord détrônée par la découverte de la supraconductivité dans des oxydes de type cuprates, elle connut un autre coup de tonnerre avec la découverte de la supra conductivité dans LaFeAsO1-xFx. Cette nouvelle famille de supraconducteurs est définie par des propriétés physiques spécifiques promettant de nombreux débouchés. Il faut noter toutefois que les faibles courants critiques observés chez ces matériaux en couche à base de fer risquent de représenter une limitation de leur potentiel pour des applications à fort courant.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
David BERARDAN : Maître de conférences à l'Institut de chimie moléculaire et des matériaux d'Orsay (Université Paris-Sud 11)
INTRODUCTION
L'histoire centenaire de la supraconductivité a été marquée par des découvertes inattendues. Lors de sa découverte de la supraconductivité dans le mercure en 1911, H. K. Onnes souhaitait tester l'hypothèse de Lord Kelvin du gel du mouvement des électrons à l'approche du zéro absolu. Un peu plus de 40 ans plus tard avec l'élaboration de la théorie BCS par J. Bardeen, L. Cooper et J.R. Schrieffer en 1957, on pensait avoir expliqué et compris tous les principaux aspects de la supraconductivité. Les découvertes successives de nombreux matériaux supraconducteurs apportaient une confirmation éclatante de la théorie BCS. La supraconductivité était alors supposée être cantonnée aux métaux et alliages de métaux, et une température critique record à 23,3 K était atteinte dans Nb3Ge.
La découverte inattendue de la supraconductivité dans les phases de Chevrel, celle des conducteurs organiques ou des fermions lourds avait donné de premières indications d'une possible insuffisance de la théorie BCS, mais c'est la découverte en 1986 de la supraconductivité dans des oxydes de type cuprates, avec des températures critiques supérieures à la température de liquéfaction de l'azote, qui a apporté le principal coup de bélier à sa supposée universalité. Ces découvertes successives ont eu pour corollaire de nombreux développements technologiques, de l'électronique rapide à la détection magnétique par SQUID (Superconducting Quantum Interference Device) en passant par les électro-aimants. Néanmoins, il est intéressant de constater que, plus de 20 ans après la découverte des cuprates, il n'y a pas encore de théorie qui fasse consensus pour expliquer l'origine de leur état supraconducteur. Pendant cette période, l'une des seules certitudes à prévaloir était que l'état supraconducteur ne pouvait pas apparaître dans un matériau à base de fer, cet élément étant réputé être un poison pour la supraconductivité du fait de ses propriétés magnétiques. La découverte de la supraconductivité dans LaFeAsO0,88F0,12 en 2008, avec une température critique de 26 K, qui allait vite atteindre 55 K en remplaçant le lanthane par le samarium, a alors retenti comme un coup de tonnerre.
L'objectif de cet article est de donner un aperçu de la nouvelle famille de supraconducteurs que constituent ces matériaux en couche à base de fer. Nous nous intéresserons à la fois aux propriétés physiques de ces matériaux et aux développements technologiques potentiels.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Caractérisation et propriétés de la matière
(115 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Perspectives
3.1 Matériaux supraconducteurs à base de fer appartenant à d'autres familles
3.1.1 Couche réservoir de charges de type perovskite
Nous avons vu dans la section 2 que la conduction du courant se fait dans la couche fer-arsenic. Par ailleurs, les propriétés supraconductrices, et particulièrement la température critique, semblent dépendre de la géométrie de cette couche (angles dans le tétraèdre FeAs4 et distance entre le plan arsenic et le plan fer). Cette observation a conduit de nombreuses équipes à rechercher d'autres SCF en dehors des familles 1111, 111, 122 et 11, en jouant sur la nature de la couche réservoir de charges. Les deux conditions à remplir pour cette couche sont des paramètres de maille a et b proches de ceux de la couche fer-arsenic, et une charge formelle globale qui puisse compenser celle de la couche fer-arsenic.
Les résultats les plus intéressants ont été obtenus pour une couche réservoir de charges de type perovskite. Contrairement aux composés de type 122 et 1111 pour lesquelles les couches fer-arsenic ne sont séparées que par une seule couche [R2O2]2+ ou [A]2+, il est possible dans ces nouveaux matériaux de faire varier le nombre de couche séparatrices, ce qui contribue à augmenter le caractère bidimensionnel du matériaux. Les structures obtenues sont illustrées figure 21 avec l'exemple des familles « 42622 » (couche séparatrice formée de deux demi-couches perovskite) et « 43822 » (triple couche séparatrice perovskite). Cette seconde famille fait partie d'un groupe plus vastes d'analogues de formule générale (Fe2As2)(A n+1M n O y ) (n = 3, 4, 5) où n représente le nombre d'unités perovskite dans la couche réservoir de charge.
Le tableau 4 résume les températures critiques les plus élevées obtenues à ce jour dans ces composés.
La limite actuelle au développement des matériaux appartenant à ces familles est qu'il semble très difficile de les synthétiser avec une pureté convenable, des phases parasites étant le plus fréquemment...
Cet article fait partie de l’offre
Caractérisation et propriétés de la matière
(115 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Perspectives
BIBLIOGRAPHIE
-
(1) - JOHNSTON (D.C.) - The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. - Advances in Physics, 59, p. 803 (2010).
-
(2) - MIZUGUCHI (Y.), TAKANO (Y.) - A review of Fe-chalcogenide superconductors : the simplest Fe-based superconductor. - Journal of the Physical Society of Japan, 79, p. 102001 (2010).
-
(3) - MANDRUS (D.), SEFAT (A.S.), McGUIRE (M.A.), SALES (B.C.) - Materials chemistry of BaFe2As2 : A model platform for unconventional superconductivity. - Chemistry of Materials XXXXXX.
-
(4) - PAGLIONE (J.), GREENE (R.L.) - High-temperature superconductivity in iron-based materials. - Nature Physics, 6, p. 645 (2010).
-
(5) - ASWATHY (P.M.), ANOOJA (J.B.), SARUN (P.M.), SYAMAPRASAD (U.S.) - An overview on iron based superconductors. - Superconductors Science and Technology, 23, p. 073001 (2010).
-
(6)...
Cet article fait partie de l’offre
Caractérisation et propriétés de la matière
(115 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive