Présentation

Article

1 - LASERS À SOLIDES CRISTALLINS

2 - LASERS À SEMI-CONDUCTEUR

3 - CONCLUSION

Article de référence | Réf : AF3272 v1

Lasers à semi-conducteur
Lasers à solides

Auteur(s) : Antoine HIRTH

Date de publication : 10 avr. 2001

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

Auteur(s)

  • Antoine HIRTH : Docteur en Sciences Physiques - Responsable du groupe Optronique et Physique du laser à l’Institut franco-allemand de recherches de Saint-Louis

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Parmi les sources lasers, ce sont celles basées sur les matériaux solides qui connaissent aujourd’hui les développements les plus spectaculaires. Les progrès réalisés sont dus principalement à trois facteurs :

  • le développement de nouveaux matériaux issus de la cristallogénèse de nouvelles matrices cristallines avec différents dopants ;

  • le pompage par diodes lasers qui permet par rapport au pompage en lumière incohérente par lampes d’obtenir des rendements élevés (jusqu’à 20 %), une durée de vie accrue et un encombrement réduit ;

  • la mise en œuvre des propriétés non linéaires de certains cristaux qui permettent de modifier les longueurs d’onde fondamentales émises de façon à couvrir tout le spectre depuis l’UV jusqu’à l’IR moyen (200 nm à 12 µm).

Les différentes techniques de mise en forme temporelle des émissions lasers (modulation, déclenchement et couplage de modes) appliquées aux sources solides permettent d’obtenir tous les modes de fonctionnement souhaités : fonctionnement en régime continu ou pulsé répétitif à haute cadence avec des durées d’impulsion de l’ordre de la femtoseconde (10 –15 s).

Le lecteur se reportera utilement aux articles de ce traité :

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af3272


Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

2. Lasers à semi-conducteur

2.1 Physique

Dans un semi-conducteur, les paires électrons-trous corres-pondent à des états excités. Lors de la recombinaison, l’énergie de liaison peut être libérée sous forme radiative, si celle-ci n’est pas en compétition avec d’autres processus. Dans un semi-conducteur polarisé en direct, la durée de vie de la radiation spontanée est très courte (10 –10 à 10 –9 s), ce qui entraîne un gain très élevé dans un système en inversion de population.

Pour éviter que le rayonnement puisse être absorbé, on s’arrange pour que le gap énergétique soit supérieur à l’énergie hν du photon ; cela est réalisé lorsque les électrons dans la limite inférieure de la bande de conduction viennent se recombiner avec les trous dans la partie supérieure vide de la bande de valence (système à quatre niveaux).

Cette condition est réalisée dans les semi-conducteurs dégénérés à très fort dopage.

Dans une jonction PN, l’inversion est obtenue lorsque l’on fait circuler un courant en appliquant une tension voisine de ΔE/e. ΔE étant le gap énergétique entre les deux bandes et e la charge de l’électron (figure 1). Les longueurs d’ondes émises dépendent de ΔE, donc des matériaux constituant la jonction PN.

Exemple

GaAs émet vers 890 nm, GaSb vers 1 870 nm, InP vers 970 nm, etc.

L’épaisseur de la jonction PN est de l’ordre du micromètre. Le guidage sur un certain trajet entouré de matériau qui risque d’absorber le rayonnement émis devenant important a obligé à développer des techniques particulières de ces jonctions. Comme l’indice de réfraction est très élevé (3 à 4), les coefficients de réflexion des faces de sortie sont élevés (plus de 30 %). Les caractéristiques des matériaux semi-conducteurs sont très sensibles à la température (dispersion, indice de réfraction, longueur d’onde d’émission).

Les diodes laser à semi-conducteur actuelles, suivant les matériaux et le dopage émettent sur des plages de longueurs d’onde bien distinctes.

Exemple

GaAlAs entre 750 et 880 nm, InGaAsP entre...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Lasers à semi-conducteur
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - KOKTA (M.R.) -   Growth of Crystals for Solid State Lasers.  -  Springer Verlag. Tunable solid state lasers p. 105, 1985.

  • (2) - KAMINSKI (A.A.) -   Laser Crystals.  -  Springer Series in optical sciences, vol. 14, 1981.

  • (3) - KOECHNER (W.) -   Solid-State Laser Engineering.  -  Springer series in optical sciences, vol. 1, 1996.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS