Article de référence | Réf : NM5200 v2

Effet photovoltaïque : principe physique
Nanostructures pour cellules photovoltaïques inorganiques

Auteur(s) : Clément REYNAUD

Relu et validé le 23 nov. 2023

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Cet article présente les méthodes qui reposent sur l’utilisation de nanostructures pour augmenter les performances de cellules photovoltaïques inorganiques. L’optimisation des performances optiques par des mécanismes de piégeage de lumière et d’effets plasmoniques est abordée, tout comme l’optimisation des performances électroniques, qui passe notamment par l’ingénierie des niveaux électroniques de la cellule solaire pour favoriser le transport et la collecte de charges photogénérées. Enfin, des éléments contextuels sont exposés afin de relier ces aspects technologiques avec les aspects historiques, environnementaux et économiques.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

INTRODUCTION

L’électricité photovoltaïque est unanimement considérée comme l’un des piliers de la transition énergétique nécessaire à la mitigation du changement climatique. En France, les différents rapports de projection sur le mixte électrique possible à l’horizon 2050 font ainsi état de proportions d’électricité photovoltaïque dans la production totale d’électricité allant de 13 à 36 % contre 2,8 % en 2020. Plusieurs leviers sont disponibles pour favoriser son développement, dont deux principaux :

  • la réduction des coûts par effet d’échelle sur la production de technologies déjà matures ;

  • l’optimisation des performances des panneaux solaires qui, à production électrique constante, permettent une empreinte au sol des installations solaires plus faible, et donc des coûts financiers et environnementaux réduits.

Dans cet article, nous nous intéresserons tout particulièrement au second levier, par le biais des méthodes de conception de cellules photovoltaïques impliquant des nanostructures.

Que ce soit pour augmenter la quantité d’énergie solaire absorbée par la cellule solaire (optimisation optique) ou pour augmenter la quantité d’électricité produite à partir de la lumière absorbée (optimisation électronique), les nanostructures sont au centre de l’interaction lumière-matière qui régit les performances des dispositifs photovoltaïques.

Au-delà de ces considérations optoélectroniques, il est de plus possible de mettre à profit les propriétés des nanostructures pour d’autres usages, comme c’est le cas pour la conception de cellules photovoltaïques dites « autonettoyantes » qui permettent de limiter les coûts d’entretien habituellement nécessaires au maintien d’une production électrique optimale.

Enfin, la mise en place d’une technologie à grande échelle industrielle a des conséquences environnementales et il convient d’y être vigilant, tout particulièrement lorsque les effets sanitaires à long terme sur l’humain des nanocomposés sont encore mal connus.

L’objectif de cet article est donc d’offrir une vue d’ensemble de la problématique des nanostructures appliquées aux cellules solaires photovoltaïques inorganiques telles qu’elles existent déjà dans l’industrie ainsi que telles qu’elles sont développées en laboratoire. Cette approche technique est complétée par un contexte historique, économique et environnemental afin de proposer un éclairage plus complet de la situation.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-nm5200

CET ARTICLE SE TROUVE ÉGALEMENT DANS :

Accueil Ressources documentaires Innovation Nanosciences et nanotechnologies Nanotechnologies pour l'énergie, l'environnement et la santé Nanostructures pour cellules photovoltaïques inorganiques Effet photovoltaïque : principe physique

Accueil Ressources documentaires Environnement - Sécurité Métier : responsable environnement Innovations en énergie et environnement Nanostructures pour cellules photovoltaïques inorganiques Effet photovoltaïque : principe physique

Accueil Ressources documentaires Innovation Innovations technologiques Innovations en énergie et environnement Nanostructures pour cellules photovoltaïques inorganiques Effet photovoltaïque : principe physique

Accueil Ressources documentaires Électronique - Photonique Optique Photonique Nano-optique Nanostructures pour cellules photovoltaïques inorganiques Effet photovoltaïque : principe physique


Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

2. Effet photovoltaïque : principe physique

L’effet photovoltaïque est une conséquence de l’interaction lumière-matière lors de laquelle des photons (provenant du soleil ou de tout autre source artificielle) provoquent l’excitation de charges électriques qui peuvent ensuite être collectées sous forme d’un courant continu.

Les atomes des matériaux semi-conducteurs utilisés à cette fin ont la particularité de disposer d’une bande de valence disjointe de la bande de conduction dans laquelle les charges peuvent se déplacer librement. Dans le cas du silicium, 4 électrons sont présents dans la bande de valence, et il faut leur fournir 1,1 eV (1,76e-18 J) d’énergie afin de promouvoir leur injection dans la bande de conduction où ils pourront participer à un courant électrique. Cette quantité d’énergie est appelée l’énergie de gap (ou bandgap) et varie d’un matériau à un autre. Les photons composant le rayonnement solaire ayant des énergies variant de 0 à 4 eV, seuls les photons d’énergie supérieure à l’énergie de gap pourront participer à la génération d’un courant, tandis que le matériau semi-conducteur sera transparent pour les photons d’énergie inférieure à l’énergie de gap.

Afin de parvenir à collecter les charges générées par cette interaction lumière-matière, il est impératif de créer un champ électrique dans la structure, qui force le flux de charges dans une direction donnée afin qu’il puisse être exploité. Cette condition est remplie grâce à un procédé appelé « dopage » consistant à créer deux zones de charges électriques opposées dans le matériau semi-conducteur. Dans l’une, un atome ayant 1 électron de plus dans la bande de valence que le matériau semi-conducteur (comme le phosphore qui a 5 électrons de valence contre 4 pour le silicium) est introduit dans le cristal. Le silicium n’étant capable de créer que 4 liaisons covalentes avec des atomes voisins, le surplus d’électrons de valence se traduit par l’apparition d’une charge libre supplémentaire. La zone ainsi traitée est dite « dopée N » : elle a un excès de charges électriques négatives 2.

On peut procéder de même avec un atome disposant d’un électron de moins dans sa bande de valence que le matériau...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Effet photovoltaïque : principe physique
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - Climate Watch -   Washington, D.C.  -  World Resources Institute. Available at : https://www.climatewatchdata.org/ghgemissions ?breakBy=sector&end_year=2018&start_year=1990 (2019).

  • (2) - ADEME -   Documentation spécifique des facteurs d’émissions de la Base Carbone®.  -  Base Carbone Version 17, p. 398 (2019).

  • (3) - IEA -   World Energy Outlook 2021.  -  Revised version (2021).

  • (4) - FO, F.I. & SYSTEMS -   *  -  . – R. S. E. Photovoltaics Report (2021).

  • (5) - REYNAUD (C.A.), LECHÈNE (P.B.), HÉBERT (M.), CAZIER (A.), ARIAS (A.C.) -   Evaluation of indoor photovoltaic power production under directional and diffuse lighting conditions for energy harvesting applications.  -  Sol. Energy Mater. Sol. Cells 200 (2019).

  • (6) - SHOCKLEY (W.), QUEISSER...

1 Réglementation

Article L. 523-1 du Code de l’environnement portant sur la déclaration obligatoire de l’utilisation de nanomatériaux.

HAUT DE PAGE

2 Brevets

Method for randomly texturing a semiconductor substrate US9941445B2

HAUT DE PAGE

3 Annuaire

HAUT DE PAGE

3.1 Organismes – Fédérations – Associations (liste non exhaustive)

Déclaration des substances à l’état nanoparticulaire sur le site du ministère de la Transition écologique :

http://www.r-nano.fr

HAUT DE PAGE

3.2 Laboratoires (France et Europe)

Fraunhofer Institute für Solar Energie (Freiburg, Allemagne) :

https://www.ise.fraunhofer.de/

Institut photovoltaïque d’Île-de-France...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire

QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

1/ Quiz d'entraînement

Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

2/ Test de validation

Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS