Présentation
En anglaisAuteur(s)
-
Nicolas MEDARD : Responsable Développement Couches minces, Nanolane - Chargé du développement de nouveaux supports optiques SEEC
-
Marie-Pierre VALIGNAT : Maître de conférences à l’université Aix-Marseille 2, - Laboratoire Adhésion & Inflammation, INSERM U600, CNRS UMR 6212 - Co-inventeur de la microscopie SEEC
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Ces dernières décennies, de nombreuses techniques d’amplification du signal pour repousser les limites de détection ont vu le jour. La grande majorité d’entre elles mettent en œuvre l’utilisation de supports aux propriétés bien spécifiques. En effet, des supports constitués de couches minces ou de couches micro- ou nanostructurées sont aujourd’hui présents dans des domaines tels que l’analyse biologique sans marquage, la spectroscopie RAMAN ou encore la microscopie SNOM... Des supports amplificateurs de contraste ont également été développés pour la microscopie optique mais leurs performances restaient jusqu’à maintenant très limitées. En effet, la microscopie optique pose des contraintes particulières de par la géométrie du faisceau d’éclairage incident. Une étude portant sur la modélisation du trajet lumineux en lumière polarisée a récemment permis l’élaboration de supports répondant à des conditions d’amplification de contraste. De par leurs caractéristiques, ces supports permettent avec un microscope optique standard, la visualisation de couches et d’objets d’épaisseurs nanométriques (nanofilm, biofilm, biopuce, brin d’ADN, nanoparticule, nanotube de carbone, feuillet de graphène...).
These last decades, numerous signal enhancement techniques to push away the detection limits were born. Most of them implement the use of supports with specific properties. Indeed, supports made of thin layers, or micro- or nano-structured layers are present in topics such as unlabelling biological analysis, RAMAN spectroscopy, SNOM microscopy... Contrast enhanced supports were also developed for the optical microscopy but their performances remained so far very limited. Indeed, the optical microscopy has particular constraints due to the geometry of the incidental lightbeam. Recently, a study concerning the modelling of the polarized light beam allowed the elaboration of supports having contrast-enhancement properties. Due to their characteristics, these supports enable to visualize with a standard optical microscope, layers and objects having nanometric thicknesses (nanofilm, biofilm, biochip, ADN strength, nanoparticle, carbon nanotube, graphene sheet...).
SEEC, Microscopie optique, nanotechnologie, surface amplificatrice de contraste, nano-films, nano-objets.
SEEC, optical microscopy, nanotechnology, contrast-enhanced surface, nano-films, nano-objects.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Innovation > Nanosciences et nanotechnologies > Nanosciences : concepts, simulation et caractérisation > Microscopie SEEC : la microscopie optique comme outil de caractérisation nanométrique > Amplification de contraste en microscopie optique
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Nano-optique > Microscopie SEEC : la microscopie optique comme outil de caractérisation nanométrique > Amplification de contraste en microscopie optique
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Amplification de contraste en microscopie optique
Les recherches sur l’amplification de contraste ont également touché des techniques plus classiques tels que la microscopie optique. Les développements orientés dans un premier temps vers la modulation du signal optique (technique DIC) ont, dans un second temps, concerné le domaine des supports amplificateurs de contraste.
3.1 Technique DIC (Differential Interference Contrast)
Les deux principales fonctions d'un microscope optique sont d'augmenter la taille et de maximiser la résolution d'une image pour rendre un échantillon microscopique visible. Cependant, l'œil humain ou les détecteurs sont sensibles aux variations d’intensité ou de couleur et dans de nombreux cas, par exemple dans les milieux vivants, le contraste est si pauvre que les spécimens restent invisibles indépendamment de la résolution optique. Il en est ainsi pour les objets qui n’absorbent pas la lumière, souvent appelés « objets de phase ». Pour visualiser de tels objets, il est nécessaire de convertir des différences de phase en différence d’intensité. La technique DIC ou NIC (Normarski Interference Contrast) utilise ce principe (figure 3).
Un rayon lumineux est polarisé linéairement par un polariseur puis séparé par un prisme de Wollaston (ou Nomarski) en deux rayons de même longueur d’onde, mais polarisés orthogonalement et séparés spatialement d’une distance très courte (< 1 µm). Ces deux rayons subissent un déphasage différent lorsqu’ils traversent des points différents du spécimen....
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Amplification de contraste en microscopie optique
BIBLIOGRAPHIE
-
(1) - SCHASFOORT (R.B.M.), TUDOS (A.J.) - Handbook of Surface PlasmonResonance - RSC Publishing (2008).
-
(2) - FORT (E.), GRESILLON (S.) - * - . – J. Phys. D : Appl. Phys., 41(1), 013001 (2008).
-
(3) - AIZPURUA (J.), TAUBNER (T.), JAVIER GARCIA de ABAJO (F.), BREHM (M.), HILLENBRAND (R.) - * - . – Optics Express, 16(3), 1529-1545 (2008).
-
(4) - NOMARSKI (G.) - Interferentialpolarizingdevice for study of phase objects - US Patent 2924142.
-
(5) - LESSOR (D.L.), HARTMAN (J.S.), GORDON (R.L.) - * - . – I. Theory. J. Opt. Soc. Am. 69, 357-366 (1979).
-
(6) - PLUTA (M.) - Advanced light microscopy - Elsevier, Amsterdam, Vol. 2, Chap. 7 (1989).
-
...
ANNEXES
Supports antiréfléchissants et supports amplificateurs de contraste pour la lumière polarisée en réflexion [FR 2 841 339 A1].
Dispositif de visualisation bidimensionnelle ellipsométrique d’un échantillon, procédé de visualisation et procédé de mesure ellipsométrique avec résolution spatiale [FR 2 818 376 A1].
HAUT DE PAGE
Commercialisation de supports amplificateurs de contraste optique :Nanolane-France http://www.nano-lane.com
HAUT DE PAGECet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive