Présentation
En anglaisRÉSUMÉ
Depuis plus d'un siècle, il était admis pour des raisons théoriques que la résolution optimale des microscopes classiques était limitée à environ 250 nm. La microscopie optique en champ proche permet aujourd'hui de dépasser cette barrière. En se basant sur l'observation de la lumière diffractée par l'objet à seulement quelques nanomètres de sa surface, cette optique nouvelle donne accès au comportement des matériaux en réponse à une excitation électromagnétique avec une résolution de quelques nanomètres, ce qui constitue une avancée technologique spectaculaire dans le domaine.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
For over a century, it had been stated for theoretical reasons that the optimal resolution of traditional microscopes was limited to around 250 nm. The near-field optical microscopy now allows for going beyond this limit. Based upon the observation of the light diffracted by the object at only a few nanometers of its surface, this new optics provides access to the behavior of materials in response to an electromagnetic excitation with a resolution of a few nanometers which represents a spectacular technological breakthrough in this domain.
Auteur(s)
INTRODUCTION
Depuis plus d'un siècle, il était admis pour des raisons théoriques que la résolution optimale des microscopes classiques était limitée à environ 250 nm. La microscopie optique en champ proche permet aujourd'hui de dépasser cette barrière. En se basant sur l'observation de la lumière diffractée par l'objet à seulement quelques nanomètres de sa surface, cette optique nouvelle nous donne accès au comportement des matériaux en réponse à une excitation électromagnétique avec une résolution de quelques nanomètres, ce qui constitue une avancée technologique spectaculaire dans le domaine.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Nano-optique > La nano-imagerie par microscopie optique en champ proche > Ondes évanescentes, souveraines du nanomonde
Accueil > Ressources documentaires > Innovation > Nanosciences et nanotechnologies > Nanosciences : concepts, simulation et caractérisation > La nano-imagerie par microscopie optique en champ proche > Ondes évanescentes, souveraines du nanomonde
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Ondes évanescentes, souveraines du nanomonde
2.1 Qu'est-ce qu'une onde évanescente ?
Comme nous l'avons vu précédemment, le critère de Rayleigh établit une barrière physique qui rend inobservables les détails de dimension inférieure à la demi-longueur d'onde d'illumination. Au cours de sa propagation, la lumière perd l'information qu'elle contient concernant ces petits détails, exactement comme si le milieu dans lequel la lumière se propage était un filtre à détails sublongueur d'onde, et donc un filtre passe-bas pour les fréquences spatiales (figure 2). Lorsqu'on illumine un objet sans détail fin et qu'on observe la lumière transmise, les fronts d'onde nous parviennent sans subir de déformations et on voit une image fidèle de l'objet. En revanche, si l'objet possède des détails de taille inférieure à la longueur d'onde λ de l'illumination, alors les fronts d'onde vont être lissés au cours de la propagation et perdre les informations relatives à ces détails. Et plus les fréquences spatiales associées à l'objet sont élevées, plus les ondes qui leur sont associées seront rapidement atténuées à mesure qu'on s'éloigne de l'objet .
Ce filtrage de l'information se retrouve également grâce aux calculs qui permettent de mieux comprendre les principes physiques sous-jacents. Dans le cas à 2 dimensions de la figure 2, en résolvant les équations de Maxwell ...
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Ondes évanescentes, souveraines du nanomonde
BIBLIOGRAPHIE
-
(1) - * - http://fr.wikipedia.org/wiki/Th%C3%A9orie de la diffraction, Wikipédia, article sur la théorie de la diffraction
-
(2) - LAHMANI (M.), DUPAS (C.), HOUDY (P.) - Les nanosciences : nanotechnologies et nanophysique. - Éditions Belin, p. 134 à 136 (2004).
-
(3) - SYNGE (E.H.) - A suggested method for extending microscopic resolution into the ultra-microscopic region. - Philos. Mag., 6, p. 356 à 362 (1928).
-
(4) - ASH (E.A.), NICHOLLS (G.) - Super-resolution aperture scanning microscope. - Nature, 237, p. 510 à 512 (1972).
-
(5) - POHL (D.W.) et al - Optical stethoscopy : image recording with resolution λ/20. - Appl. Phys. Lett., 44, p. 651 à 653 (1984).
-
(6) - LEWIS (A.), ISAACSON (M.), HAROOTUNIAN (A.), MURRAY (A.) - * - Ultramicroscopy 13, 227 (1984).
- ...
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive