Présentation

Article

Article de référence | Réf : AF113 v1

Techniques d’étude des applications holomorphes
Analyse complexe - Applications holomorphes

Auteur(s) : Bernard RANDÉ

Date de publication : 10 avr. 2000

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Bernard RANDÉ : Ancien élève de l’École normale supérieure de Saint-Cloud - Docteur en mathématiques - Agrégé de mathématiques - Professeur de mathématiques spéciales au lycée Saint-Louis

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Les applications holomorphes permettent d’élucider certains phénomènes qui semblent ne mettre en cause, au premier abord, que des nombres réels, alors que ces applications sont définies sur un ouvert du plan complexe.

Un exemple frappant de cette situation est fourni par le calcul d’intégrales de fonctions de la variable réelle, rendu simple et surtout systématique, par l’utilisation de la formule des résidus.

Cette formule exprime, en termes calculatoires, la géométrie du plan complexe, qui diffère de celle de la droite réelle en ceci que, dans le premier cadre, il est possible d’entourer un point par un lacet (c’est-à-dire une courbe qui se referme sur elle-même). La notion d’intégrale le long d’un lacet permet alors de calculer une intégrale « autour » d’un pôle d’une application holomorphe f. Ce faisant, on fait apparaître deux termes :

  • le premier, de nature géométrique, est le nombre de tours que fait le lacet autour du pôle : c’est la notion d’indice ;

  • le second exprime le comportement de f au voisinage du pôle, qui fait intervenir un nombre, le résidu de f en ce pôle.

À l’aide de telles intégrales, on obtient une formule assez générale, dite formule des résidus. Convenablement appliquée à des lacets particuliers, elle permet d’obtenir la valeur de nombreuses intégrales d’applications définies sur , souvent restrictions de certaines applications holomorphes sur .

On peut aussi en déduire d’autres égalités, en appliquant la formule des résidus à des applications dépendant d’un paramètre complexe. Ces égalités donnent lieu à des identités entre fonctions complexes (du paramètre). Les développements eulériens sont de cette nature.

L’utilisation d’intégrales le long de certains chemins conduit aussi à la résolution d’équations différentielles. Ce sujet, en soi très vaste, n’est pas abordé dans l’article, pas plus que la recherche du comportement asymptotique d’intégrales dépendant d’un paramètre.

La « Théorie des applications holomorphes » est traitée dans le fascicule

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af113


Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

2. Techniques d’étude des applications holomorphes

2.1 Expressions intégrales des coefficients et applications

HAUT DE PAGE

2.1.1 Inégalités de Cauchy

Soient f une application holomorphe sur Ω, ouvert convexe de z0Ω et γ un lacet de Ω, dont l’image ne contient pas z 0. La formule des résidus, appliquée à zf(z)(zz0)n+1 , donne :

12γf(z)(zz0)n+1dz=f(n)(z0)n!Indγ(z0).

Supposons Ω quelconque, et soit r > 0 tel que D’ (z 0, r) soit inclus dans Ω. On peut appliquer la formule précédente au lacet γ, cercle positivement orienté centré en z 0 et de rayon r, et à l’ouvert...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Techniques d’étude des applications holomorphes
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS