Présentation
EnglishRÉSUMÉ
Cet article est consacré aux interactions fluide-structure vibrante, discipline à la frontière entre la dynamique des structures et la dynamique des fluides. La présentation physique des cas des petits mouvements dans le cadre de la théorie linéaire des vibrations a été retenue. Les couplages structure-fluide parfait sans écoulement servent d’introduction, avant de présenter les phénomènes non conservatifs au sein du fluide. Pour terminer, les couplages structure-fluide en écoulement permanent sont traités.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
René-Jean GIBERT : Professeur à l’Institut National des Sciences et Techniques Nucléaires - Ingénieur-conseil
INTRODUCTION
Les interactions fluide-structure (IFS) concernent le chapitre de la Mécanique consacré à la description des mouvements des structures plongées dans un fluide lui-même en mouvement et plus précisément à la détermination de la façon dont le fluide modifie le comportement des structures.
Nous nous situons donc à la frontière entre la dynamique des structures et la dynamique des fluides. Ceci implique que le domaine des IFS emprunte aux deux disciplines :
-
comme les choses sont plutôt « vues du côté de la structure », il s’inscrit dans le cadre général de la dynamique des structures ;
-
mais il faut évidemment se préoccuper des écoulements de fluide et en particulier de certaines de leurs caractéristiques au voisinage des parois.
En fait l’aspect spécifique des IFS est de décrire comment les mouvements d’une paroi modifient un écoulement et comment cela se traduit sur le champ des efforts s’exerçant sur cette paroi.
Cette dernière définition recouvre un domaine physique vaste aux applications industrielles multiples.
On peut leur appliquer la classification traditionnelle de la dynamique des structures qui distingue schématiquement :
• Les problèmes de petits mouvements qui relèvent de la théorie des vibrations. Ils sont souvent modélisés linéairement ou pseudo-linéairement et décrits dans le domaine fréquentiel. Les mouvements mis en jeu peuvent être très complexes et relever de représentations probabilistes.
• Les problèmes de grands mouvements des structures impliquant de fortes non-linéarités géométriques et également de matériau. Ces problèmes sont généralement décrits dans le domaine temporel du fait de leur caractère souvent transitoire et de la relative simplicité des mouvements mis en jeu. La prise en considération des non-linéarités dans les calculs impose également ce type de description.
Deux types de présentation des IFS sont alors possibles :
• Soit la présentation du cas général des grands mouvements, très axée sur les méthodes de résolution numérique. Les petits mouvements en sont un cas particulier, mais il est alors assez difficile d’y cerner leurs principes physiques et les méthodes d’ingénieur associées.
• Soit une présentation beaucoup plus physique du cas des petits mouvements dans le cadre de la théorie linéaire des vibrations avec une extrapolation forcément limitée aux cas non linéaires.
C’est cette deuxième approche que nous avons choisie.
Ayant choisi la méthode de l’exposé, définissons-en les contours. Une présentation complète des IFS sort en effet du cadre limité de cet article qu’il convient de considérer plutôt comme une initiation.
Le plan sera donc progressif :
Après un rappel de la théorie des vibrations des structures et des fluides (acoustique), on introduira les couplages « structure-fluide parfait sans écoulement », ce qui formera la base physique de l’exposé. On complétera ensuite par des considérations sur les effets de viscosité et les effets de fluide pour lesquels l’hypothèse des petits mouvements n’est plus vérifiée.
On terminera par les couplages « structure vibrante-fluide en écoulement permanent ».
Comme nous aurons l’occasion de le remarquer par la suite, l’effet d’un fluide en écoulement sur une structure est très complexe. En particulier l’écoulement peut être très turbulent voire instationnaire. Apparaissent alors des « sources d’excitation vibratoire » dont la description nécessite une approche probabiliste. Cet aspect ne sera pas abordé ici.
Enfin, on sait que la théorie vibratoire distingue les problèmes de « basses fréquences » et les problèmes de « hautes fréquences » qui relèvent chacun d’une physique différente. Nous choisissons ici l’approche « basses fréquences » mieux adaptée à notre avis à la majorité des problèmes industriels. Nous reviendrons sur ce point.
Ce sont tous les problèmes de tenue aux vibrations au sens large du terme : vibrations induites par les écoulements (par exemple les lignes de tuyauteries), instabilités aéro- ou hydroélastiques (structures aéronautiques, faisceaux de tubes d’échangeurs…), vibrations des machines tournantes (pompes, centrifugeuses…), effet des ondes sismiques sur les systèmes structure-fluide (par exemple le flambement dynamique des réservoirs), etc.
Comme on vient de le préciser, on ne s’intéressera pas aux sources d’excitation proprement dites mais aux caractéristiques modifiées par la présence du fluide, des systèmes qui y répondent.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique Chimie
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Couplage structure-fluide en écoulement
Nous considérons à présent une structure vibrante (donc toujours animée de petits mouvements) en présence d’un fluide en écoulement permanent, ce qui est le cas de la plupart des applications industrielles.
Le problème de la modélisation de l’interaction fluide-structure se complique alors très nettement. En effet les écoulements (à parois fixes) rencontrés dans la pratique sont en fait très complexes : le champ des vitesses comporte une partie moyenne mais également une partie fluctuante turbulente ou instationnaire. Des gradients importants sont observés dans la couche limite. Des décollements de cette dernière sont possibles, etc.
Toutes ces caractéristiques sont celles d’écoulements à nombre de Reynolds élevé.
L’existence d’une vibration des parois ne fait que compliquer le problème. Les observations expérimentales montrent des comportements opposés d’un cas à un autre. Par exemple, l’amortissement des vibrations peut augmenter avec la vitesse de l’écoulement mais on peut observer également des instabilités pour certaines vitesses dites critiques. Au-delà de certaines vitesses, un système instable peut redevenir stable, etc.
Des tentatives de modélisation fine basées sur la résolution numérique des équations de Navier-Stokes commencent à donner des résultats encourageants du fait des grands progrès réalisés par la CFD (Computational Fluid Dynamics) mais elles restent encore du domaine de la recherche 4.4.
En ce qui concerne les méthodes de l’ingénieur, elles sont basées sur les observations expérimentales « interprétées » à l’aide de modèles plus ou moins simples.
C’est une revue de ces modèles que nous allons faire dans ce paragraphe, ce qui reviendra à une description raisonnée et ordonnée des différents phénomènes observés. Nous resterons bien sûr dans notre cadre des phénomènes vibratoires à basse fréquence.
4.1 Linéarisation autour d’un écoulement à potentiel
Pour expliquer certains comportements vibratoires de structures en écoulement, il n’est pas nécessaire d’avoir recours à un modèle compliqué de l’écoulement...
Cet article fait partie de l’offre
Physique Chimie
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Couplage structure-fluide en écoulement
BIBLIOGRAPHIE
-
(1) - * - Nous avons limité la liste bibliographique à quelques livres à caractère pédagogique ou à des articles de base permettant d’approfondir tel ou tel sujet abordé dans cet article. Chacune de ces références dont certaines sont assez récentes, comporte elle-même une liste bibliographique souvent assez exhaustive d’articles spécialisés qui permettront au lecteur intéressé de se faire une idée précise de l’état de l’art.
-
(2) - AXISA (F.) - Modélisation des systèmes mécaniques – Tome 4 : Vibrations sous écoulement. - Eds Hermès (2001).
-
(3) - BIREMBAUT (Y.) - Raideur et amortissement des paliers hydrauliques - . Mémoires Techniques du CETIM no 32 (1977).
-
(4) - BLEVINS (R.D.) - Applied fluid dynamic handbook - . Van Nostrand Reinhold – New York (1984).
-
(5) - BLEVINS (R.D.) - Flow – induced vibration - . 2nd edition – Van Nostrand Reinhold – New York (1990).
- ...
Cet article fait partie de l’offre
Physique Chimie
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive