Article de référence | Réf : J1091 v1

Données nécessaires à l’étude des interactions
Particules poreuses interactives - Morphologie et caractérisation

Auteur(s) : André ZOULALIAN

Date de publication : 10 juin 2006

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

De nombreuses interactions chimiques et physiques mettent en jeu une phase fluide et une phase solide. Ces phénomènes physiques et/ou chimiques sont rendus possibles par la présence d’une microporosité dans laquelle les transports diffusionnels de la matière ne deviennent plus négligeables devant d’éventuels transferts convectifs. Cet article présente les modèles simplifiés de morphologie de la particule, ainsi que les paramètres de transfert associés. Sont ensuite exposées les données thermodynamiques et cinétiques des trois types d’interactions couramment établies.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

 

Auteur(s)

  • André ZOULALIAN : Professeur à l’université Henri-Poincaré (Nancy I) - Docteur ès sciences - Docteur-ingénieur ENSIC (École nationale supérieure des industries chimiques de Nancy)

INTRODUCTION

De nombreux phénomènes physiques et/ou chimiques se déroulent au sein de milieux solides poreux naturels ou synthétiques. La morphologie de ces milieux n’est pas nécessairement structurée et l’analyse des interactions nécessite d’imaginer une simplification de la texture. Cette représentation simplifiée n’empêche pas l’obtention de résultats globaux cohérents permettant l’optimisation, l’automatisation et l’extrapolation des procédés industriels à base de ces interactions.L’objectif de cette étude est de présenter au lecteur, au niveau d’une particule solide, l’analyse globale d’une interaction se déroulant au sein de la particule dans l’un des trois cas suivants :

Pour chacune des interactions, l’analyse globale initiale correspondra à un cas où l’influence de certains processus élémentaires observables sera supposée négligeable. Lorsque cette dernière hypothèse ne sera pas vérifiée nous donnerons son impact sur l’interaction. Enfin, pour chacune des trois interactions, nous présenterons un cas simplifié d’analyse globale permettant au lecteur d’avoir une quantification de l’incidence des processus élémentaires de transfert sur l’interaction chimique ou physique.L’analyse globale d’une interaction physique et/ou chimique au sein d’une particule poreuse ne peut déboucher sans une connaissance préalable de la morphologie de la particule et des caractéristiques physico-chimiques de transfert de matière et de chaleur à associer aux interactions.L’objet de ce dossier Particules poreuses interactives- Morphologie et caractérisation est de rappeler, d’une part, les modèles simplissimes de morphologie avec les paramètres de transfert associés et, d’autre part, les données thermodynamiques et cinétiques propres à chacun des trois types d’interactions examinés successivement dans les dossiers suivants.

Les notions présentées dans ces dossiers se retrouvent dans de nombreux livres en langue anglaise et française. On trouvera, dans la bibliographie les principaux ouvrages en langue anglaise [12] [13] [17] et en langue française [18] [19] sur lesquels s’appuient les exposés.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-j1091


Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(361 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

3. Données nécessaires à l’étude des interactions

3.1 Isothermes d’adsorption

Lorsqu’un soluté interagit sur une surface solide, l’interaction débute par une étape d’adsorption qui correspond à la formation d’une liaison du type Van der Waals, hydrogène ou homopolaire entre le soluté et la surface cristalline du solide. On distingue d’une part l’adsorption physique et d’autre part l’adsorption chimique ; la distinction entre ces deux types d’adsorption est obtenue par la nature des isobares d’adsorption (volume adsorbé Va en fonction de la température T). La figure 4 représente l’allure générale des isobares d’adsorption.

La partie AB de la courbe expérimentale ABCD correspond à l’adsorption physique (ABB’) alors que la partie CD est relative à l’adsorption chimique (C’CD). L’adsorption chimique n’est décelable qu’à partir d’une certaine température pour laquelle l’adsorption physique devient généralement négligeable.

Les isothermes d’adsorption chimique présentent en général la forme montrée figure 5.

Cette forme initialement expliquée par Langmuir repose sur les hypothèses suivantes :

  • tous les sites de la surface sont identiques ;

  • l’adsorption maximale correspond à la formation d’une monocouche ;

  • l’interaction entre les molécules d’adsorbat est négligeable.

En caractérisant le soluté en phase gazeuse par sa pression partielle P (ou par sa concentration), et le soluté adsorbé par son rapport massique X (masse d’adsorbat sur masse d’adsorbant), l’isotherme d’adsorption chimique de Langmuir se traduit par la relation :

avec :

K
 : 
constante d’équilibre de la réaction entre le soluté et un site actif du solide, soit :

...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(361 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Données nécessaires à l’étude des interactions
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - RYAN (O.), CARBONEL (R.G.), WHITAKER (S.) -   *  -  Chem. Eng. Sci. (USA) 35, p. 10 (1980).

  • (2) - ADROUTSOPOULOS (G.P.), MANN (R.I.) -   *  -  Chem. Eng. Sci. (USA) 34, p. 1203 (1979).

  • (3) - MANN (R.), GOLDSHAN (H.) -   *  -  Chem. Eng. Commun. (GB) 12, p. 377 (1981).

  • (4) - MANN (R.), ANDROUTSOPOULOS (G.P.), GOLDSHAN (H.) -   *  -  Chem. Eng. Sci. (USA) 36, p. 337 (1981).

  • (5) - EVANS (J.W.), ABBASI (M.H), SARIN (A.) -   *  -  Chem. Phys. (USA) 72, p. 2967 (1980).

  • (6) - NAKANO (Y.), EVANS (J.W.) -   *  -  Applied Catalysis (NL) 78, p. 2568 (1983).

  • (7) - ABBASI (M.H.), EVANS (J.W.),...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(361 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS