Présentation

Article

1 - CARACTÉRISTIQUES

2 - ANODES

3 - ÉLECTROLYTES

4 - CATHODES

5 - PHÉNOMÈNES D'AUTODÉCHARGE

Article de référence | Réf : J4806 v1

Anodes
Piles thermiquement activées lithium/disulfure de fer

Auteur(s) : Patrick MASSET

Date de publication : 10 sept. 2008

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Les piles thermiquement activées, appelées communément « piles thermiques », sont des piles activables par combustion de composition pyrotechniques. Elles peuvent rester installées à demeure sur les systèmes à alimenter sans perte de capacité par autodécharge grâce à leur totale inertie à l'état non activé. Une fois activées, elles doivent être utilisées immédiatement mais ne peuvent pas être réutilisées. Cet article est entièrement consacré à la description du système électrochimique lithium/disulfure de fer Li/FeS2 .

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Patrick MASSET : Docteur de l'Institut national polytechnique de Grenoble (France) - Ingénieur de recherche à l'Institut-Karl-Winnacker der Dechema e.V., à Frankfurt am Main (Allemagne)

INTRODUCTION

Les piles thermiquement activées, appelées communément « piles thermiques », sont des piles activables par combustion de composition pyrotechniques. Elles peuvent rester installées à demeure sur les systèmes à alimenter sans perte de capacité par autodécharge grâce à leur totale inertie à l'état non activé. Une fois activées, elles doivent être utilisées immédiatement mais ne peuvent pas être réutilisées. Les piles activables ont été décrites dans les articles « Piles électriques – Piles activables » [D 3 323] et « Accumulateurs – Accumulateurs à haute température » [D 3 355] de manière globale. Cet article est entièrement consacré à la description du système électrochimique lithium/disulfure de fer Li/FeS.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-j4806


Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(365 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

2. Anodes

2.1 Anode à base de lithium

HAUT DE PAGE

2.1.1 Solubilité du lithium dans les sels fondus

À haute température, le lithium sous forme métal se solubilise partiellement dans les sels fondus. La solubilité du lithium métallique dans l'électrolyte engendre une diminution de l'efficacité globale de la batterie par la conduction électronique apparaissant au sein de l'électrolyte [3]. Celle-ci doit être la plus faible possible. Dans les mélanges binaires Li—LiX (X ≥ F, Cl, Br, I), celle-ci augmente corrélativement avec la taille de l'anion halogénure [4]. Dans les mélanges binaires ou ternaires, elle demeure inférieure à 1 mol %. Ceci est en partie attribué à la formation d'une couche de sous-halogénures à l'interface Li—sel fondu qui limite la solubilité du lithium métal. Malgré la solubilité partielle du lithium dans l'électrolyte, les anodes à base de lithium sont néanmoins utilisables.

HAUT DE PAGE

2.1.2 Alliages LiX (X ≥ Al, Si, B)

Le point de fusion du lithium étant de l'ordre de 180 oC, il ne peut être utilisé sous sa forme métallique dans la zone de température de fonctionnement des piles thermiques. Les anodes sont alors constituées d'alliages de lithium Li—Al (figure 2), Li—Si (figure 3) dont les points de fusion sont supérieurs à 700 oC, et confèrent une stabilité géométrique suffisante à l'anode, notamment au début de la décharge de la pile où la température de la pile est la plus élevée. Actuellement, les alliages Li—Al, Li—Si sont utilisés industriellement. L'alliage...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(365 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Anodes
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - GUIDOTTI (R.A.), MASSET (P.) -   *  -  J. Power Sources, 161(2), p. 1443 (2006).

  • (2) - CLARCK (A.J.), THALER (C.), RREID (J.) -   *  -  Proc. 39th Power Sources Conf., p. 552 (2000).

  • (3) - WARREN (J.J.) -   *  -  Jr., in Molten Salts Chemistry, Eds G. Mamamtov and R. Marassi, p. 237 (1987).

  • (4) - DWORKIN (A.S.), BRONSTEIN (H.R.), BREDIG (M.A.) -   *  -  J. Phys. Chem., 66, p. 572 (1962).

  • (5) - WEN (J.), HUGGINS (R.A.) -   *  -  J. Sol. St. Chem., 37, p. 271 (1981).

  • (6) -   Phase Diagram for Cermists.  -  Eds. J. Murray et al., p. 128 (1987).

  • (7) -   Phase Diagram...

1 Organisme

Sandia National Laboratories http://www.sandia.gov/

HAUT DE PAGE

2 Producteurs

ASB-Aerospatiale Batteries (France) http://www.asb-group.com

Eagle Picher Industries Inc. (États-Unis) http://www.epcorp.com

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(365 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS